

BOS1921 Development Kit

1 Features

- Plug and play development kit to experience piezoelectric actuator button and haptic feedback.
- Low-power BOS1921 integrated circuit, high voltage driver with I3C/I2C digital interface.
- Power supply via the USB port.
- Graphical user interface for ease of use.
- Standard USB audio to prototype haptic effects in MATLAB[®], Python[®], Audacity[®] and many other softwares¹.
- Easy generation of high-voltage waveforms up to 190 Vpp.
- Two channel outputs for interchangeable miniature PCBs with BOS1921 drivers for prototyping.

Figure 1: BOS1921-KIT overview

2 Description

The BOS1921-KIT is a development kit to get familiar with the BOS1921 Piezo Haptic Driver IC.

The USB-powered kit appears as an USB Audio device for the computer, which allows quick and easy generation of waveforms using existing audio software like Audacity[®] for haptic prototyping.

The firmware supports autonomous operation for easy integration into development prototypes.

The interchangeable miniature PCBs give access to all signals allowing the users to experiment with the BOS1921 using a development platform of their choice.

Most commercial piezo actuators can be used with this kit. Capacitor loads are also provided to test output capabilities.

Table 1: Product information

PART NUMBER	DESCRIPTION
BOS1921-KIT-B01	Starter Set: includes a haptic and a micropump driver boards, and 4 load capacitors.

For details see sections 3 and 12.

Audacity® is a registered trademark of Dominic Mazzoni

¹ MATLAB[®] is registered trademark of The MathWorks, Inc. Python[®] is a registered trademark of the PSF

3 What's in the Box

The BOS1921-KIT is currently available in one package: *Starter Set*. The following table shows the content of the BOS1921-KIT *Starter Set*

Table 2: Starter Set BUS1921-KIT-BUT development kit content	Table 2:	Starter	Set BOS	1921-КІТ-ВО1	development	kit content
---	----------	---------	---------	--------------	-------------	-------------

#	ITEM	QTY	DESCRIPTION	REFERENCE
1	Controller Board	1	BOS1921-BRD-C02 Controller Board	A ST
2	Driver Board Haptic	1	BOS1921-BRD-L02 Driver Board optimized for larger loads such as haptic.	
3	Driver Board Pump	1	BOS1921-BRD-S02 Driver Board optimized for smaller loads such as micropumps.	
4	USB-C Cable	1	Cable to connect the evaluation PCB to a computer Adafruit Industries LLC part number 4473	
5	Capacitor	1	10 nF film capacitor Panasonic ECQ-E2103JB	19330
6	Capacitor	1	47 nF film capacitor Panasonic ECQ-E2473JB3	473J
7	Capacitor	1	100 nF film capacitor Panasonic ECQ-E2104JB3	10 4 J 19 2 J
8	Capacitor	1	470 nF film capacitor Panasonic ECQ-E2474JB	474J
9	3-position terminal block connector	1	Male connector used for interfacing the piezoelectric actuator on the board.	

CONFIDENTIAL

User Guide

#	ITEM	QTY	DESCRIPTION	REFERENCE
			Metz Connect part number 31369103, Molex part number 395100003 or equivalent.	
10	2-position terminal block connector	1	Male connector used for interfacing the piezoelectric actuator on the board. Metz Connect part number 31369102, Molex part number 395100002 or equivalent.	
11	6-position thru-hole header connector	1	2.54 mm pitch header connector for connection to external system (J3 connector on PCB). Würth Electronik part number 61300611021 (6-pin) or equivalent.	╻ ┙ ┙ ┙ ┙ ┙ ┙

1.1

BOS1921-KIT

4 Board Overview

The purpose of this section is to show the location of the components that allow you to interact with the BOS1921-KIT board. This section is in a way the definition of the user interface provided by the development board. The focus is on buttons and LEDs which allow you to know and modify the current operating state.

REF: PCB-0306 J2	REF: PCB-0307
	Раз 🚔 🚔 VBUS 🔹 🔍 🌅
J1 BOS1921-KIT (H) - 2 0002 C	J1 BOS1921-KIT PS □

Figure 2: BOS1921-KIT board user interface

User Guide

Table 3: BOS1921-KIT board user interface

Components	Name	Description
А	USB connector	Supply power and provides connectivity with the GUI.
В	Operation mode LED	Flashing if alive and color shows the current operation mode.
С	Devkit error LED	Flashing if an error is detected on any component of the devkit
D	Reset button	Reset the micro-controller on press.
E	Change operation mode button	Change the current operation mode on press.
F	GPIO to trigger haptic feedback	If configured as a haptic trigger event, a rising edge on that GPIO will trigger a haptic feedback on a piezo actuator.
G	BOS1921 A/B status LED	LEDs displaying the current state of the BOS1921.
Н	BOS1921 A/B board interface	Interface connector between controller and driver boards.
Ι	BOS1921 A/B terminal block	Terminals where piezoelectric actuator are connected.

4.1 **Operation Mode LED Details**

This section describes the meaning of the different colors and state transitions of the operation mode LED.

Table 4: Operation mode LED detail

Pattern	Color	Description
1 second on, 1 second off	Green	In Haptic mode and working normally.
1 second on, 1 second off	Blue	In Audio mode and working normally.
1 second on, 1 second off	Purple	In <i>Flash</i> mode and working normally (Operation mode not documented)

Any other pattern or color behavior maybe caused by unofficial firmware or bug.

4.2 BOS1921 Status LED Details

This section describes the meaning of the different colors and state transitions of the BOS1921 LED. The two BOS1921 of the BOS1921-KIT board are monitored to validate the presence of an internal error. If an error is detected, the BOS1921 Error LED is used to indicate the detection of this error.

Pattern	Color	Description
Always off	N/A	No error detected on any BOS1921.
Always on	Red	At least one internal error has been detected by a BOS1921.
Always on	Green	IC operate as button and the button is in released state. When the led turn off, the button is in pressed state.
Always on	Blue	When the LED is blue, the microcontroller requested a haptic feedback to the BOS1921.

Table 5: BOS1921 error LED details

5 Quick-Start

BOS1921-KIT

The BOS1921 and a piezoelectric actuator can be used together to implement the equivalent of a button. Before being shipped, the BOS1921-KIT board is set up in this button mode, so that you can experience it without additional extensive configuration or software installation. If you have an actuator such as TDK 1204, you can use it directly. Otherwise, the capacitors included in the kit can be used to test the BOS1921-KIT.

- 1. Open the box, take the BOS1921-KIT board, the USB cable, the small driver boards, the terminals block plugs, and either a piezo actuator or a capacitor.
- 2. Insert one or both the driver boards into the controller board.
- 3. Insert the terminal block plugs into the driver board(s) terminal block.
- Using a small slotted screwdriver, install a piezoactuator on the terminal block plugs. <u>Pay</u> <u>attention to connect the positive wire on the OUT+ terminal and the negative wire on the</u> <u>OUT- terminal</u>. Refer to Figure 2 to identify location of OUT+ and OUT- on the terminal block.
- 5. Connect the development kit board to a USB port using the USB cable.
- 6. When the operation mode green LED is blinking and BOS1921 A/B status LED are solid green, you are ready to go.
- 7. If using a piezo actuator : press on the piezo actuation to experience the piezo actuator button.
 - a. If using a capacitor: either press the USER button on the board to set the board to *Audio* mode and use an audio software to play waveforms, or install the Haptic Studio software to interact with the board.

6 Get Started

BOS1921-KIT

The purpose of this section is to give instructions on where to get the latest versions of Boréas software and firmware. Keeping the software up to date ensures the latest features available are taken advantage of.

6.1 Creating a Boréas Account

Relevant documentation and software are available in the support section of Boréas website. Here are the instructions for accessing it:

- 1) Go to <u>https://www.boreas.ca/account</u>.
- 2) Click on "Create account".
- 3) Enter the requested information.
- 4) Click on "Create Account".

6.2 Identifying the BOS1921-KIT Board and BOM Revision

Each PCB board reference design ("REF:") and revision (BT###-DK-v#.#) numbers are printed on the board silkscreen. A printed label stuck on the back of the PCB provides the board part number (P/N), containing the BOM revision suffix "-Bx"), and the assembly code ("####AA"). The table below indicates compatibility with the firmware and Devkit Controller software.

Figure 3: Label example giving board part number with BOM revision suffix, and assembly code

Table 6: BOS1921-KIT board and software compatibility list

BOARD P/N*	PCB REFERENCE	COMPATIBLE FIRMWARE	COMPATIBLE PC SOFTWARE
BOS1921-BRD-C01-B1	PCB-0222	BOARD_PCB_222_B1_DEVKIT-{VERSION}.hex	Boreas-Dev-Kit
	BT015-DK-UC-V1.0	Version starting at 1.15.x	Starting at 2.13.x
BOS1921-BRD-C02-B1	PCB-0305	BoreasDevKit_Release_PCB0305_{VERSION}.hex	Haptic Studio
	BT015-DK-UC-V2.0	Versions starting at 1.20.0	Starting at 1.1.x

* Board P/N include BOM revision suffix

Any PCB reference design number not listed into Table 6 are considered obsolete. The relevant documentation and software for obsolete products are still available into the archive section of our web site.

User Guide

BOS1921-KIT

6.3 Download Boréas Haptic Studio Application

Haptic Studio software is a desktop application intended to ease evaluation of the BOS1921. This application can be downloaded from Boréas website. Help instructions are provided inside the application.

- 1) Log in your Boréas account.
- 2) Go to the "Technical Documents" section.
- 3) Click on the "BOS1921-KIT Documents" link.
- 4) Scroll down to section BOS1921-KIT Controller (PC software).
- 5) Download the appropriate Haptic Studio version based on your development kit identification.
- 6) Double click on the installer executable you downloaded and follow the instructions.

6.4 Upgrade Development Kit Firmware

The native BOS1921-KIT board firmware includes an over-USB firmware upgrade mechanism. The BOS1921-KIT Haptic Studio software will offer to upgrade the firmware if needed on next connection with the development kit. Follow the on-screen instructions.

For installation of firmware without the use of this application, refer to Appendix A.

BOS1921-KIT

7 Product Overview

The BOS1921-KIT has been designed to meet a multitude of needs. The main objective is to demonstrate the capacity of the BOS1921 but also to help integrators in the development of haptic effects and in its product prototyping.

The BOS1921-KIT is delivered with a graphical user interface (GUI) for ease of use but it is not required to operate. It can save and restore its configuration at start-up. We will refer to operation without the GUI by saying that the development board is used autonomously. It is configured in one of these autonomous mode before shipping (see section 5). We will explain in more detail the so-called autonomous modes in this document.

The BOS1921-KIT supports multiple operation modes:

Table 7: Operation mode list

Mode	Will help you to		
	Experience piezo haptic button emulation.		
	• Experiment with simple waveforms on various piezoelectric actuators.		
	Experiment with piezoelectric device sensing.		
	Evaluate any piezoelectric actuator for your application.		
Haptic	• Evaluate BOS1921 performance (waveform output, power consumption) in the context of your application.		
	Optimize BOS1921 operation using specific registers value.		
	 Command BOS1921-KIT waveform trigger from your system using an external trigger signal. 		
	Easily experiment with various waveform shapes and amplitudes.		
Audio	• Easily produce and compare various waveforms and identify the effects most suited for your application.		

In *Haptic mode*, the Haptic Studios allows you to fire a given waveform from a variety of trigger mechanisms.

The BOS1921-KIT is used to test the capacity of the BOS1921 with various piezoelectric actuators. The trigger events that can be used are an action *Play* in the application, or an action of pressing and releasing the piezoelectric actuator.

In Audio mode, the development kit is detected as a standard stereo USB audio device by the PC.

We know that our customers require more flexibility and control over the waveform used for their haptic effects. For these reasons, we put at your disposal the audio mode which allows you to have complete control over the wave transmitted to the BOS1921 via the USB port. Your PC can select the BOS1921-KIT as an audio card stereo output.

The BOS1921-KIT development kit can be used as a basis for the development of a prototype.

It is possible to connect an external I2C or I3C master without separating the mini-boards from the BOS1921-KIT. For more details about the hardware refers to section 8.

BOS1921-KIT

7.1 Audio Mode Operation

When the BOS1921-KIT board is in *Audio* mode, it is detected by Windows as a speaker device. When this device is selected, all audio output from the PC will be sent to the board. Make sure to deselect the Boreas DevKit to avoid the PC from playing system sounds on the actuator.

Figure 4:Boreas DevKit speaker

User should use a software that can specifically select an individual USB device as audio output. For example, Audacity[®] allows to easily create and play waveforms on the piezo actuators attached to the board. See appendix for more details.

Board channel A will play the left audio track, and board channel B plays the right channel track.

The audio level to BOS1921-KIT output voltage level is converted linearly so the maximum audio level corresponds to 95 V on the BOS1921-KIT output, 0 audio level corresponds to 0 V output, and polarity is maintained.

CONFIDENTIAL

User Guide

8 Hardware

The purpose of this section is to provide information on the hardware design of the BOS1921-KIT PCB to help the integrator evaluate BOS1921 and to use it in a prototype.

8.1 Design Overview

The kit is composed of various boards: an application *controller board*, and two insertable *driver boards* each with a BOS1921 driver. The driver boards have different bill of materials:

- PCB-0306 with label H is optimized for maximum output power and enough strength for haptics applications.
- PCB-0307 with label PS is optimized for low loads such a micro-pumps.

By default, the BOS1921-KIT power is supplied by the USB port. However, the hardware design allows for partial or complete electrical isolation of the microcontroller section from the driver section. This is made possible by the presence level shifter circuit on the digital signals, and jumpers to connect an external supply connector to power the BOS1921 driver section.

Figure 5: BOS1921-KIT PCB overview

BOS1921-KIT

8.2 Hardware Features

In this section, we will discuss the various hardware configurations. Except for section 8.2.1, it is assumed that the driver boards are inserted into the controller board.

Some functionality in this section requires modifications to the PCB and requires a soldering iron. Disconnect the supply before making any changes to the board.

8.2.1 Interchangeable Driver Boards

The use of the separable driver board units with custom-made firmware is done at the user's own risk of causing damage beyond repair to the BOS1921 circuit. Boréas Technologies will not be held responsible.

One way to integrate a BOS1921 into your development platform is to directly connect to its header pin connector (left-hand side).

Figure 6: Driver boards

Each driver board contains a BOS1921 that can be used alone with a user-preferred development platform. All signals need to be connected to your development platform.

Signal	Description	Constraint
VBUS	Main power supply for the BOS1921	Supply voltage between 3.0 V and 5.5 V with at least
		500 mA current drive.
		When using the H board, use jumper J2 if using non-
		UPI configuration. Remove the jumper if using the
		UPI configuration.
GND	0 V reference	
SCL	I2C Clock signal	
SDA	I2C Data signal	
GPIO	Digital input/output	
SYNC	Synchronization pin	Used to synchronize feedback on many drivers
		boards.
VDDIO	Digital IO power supply	Digital signals voltage domain. Must be between
		1.62 V and 5.5 V.

Table 8: Breakable Driver Section signals

Refer to BOS1921 datasheet for a complete description on how to use and program the circuit.

CONFIDENTIAL

User Guide

8.2.2 Probe Hooks

Probe hooks are available around the board to ease connection of instruments for measurement of supplies when debugging. At the interface between the controller board and the driver boards lies a header pins connector. This connector allows to probe supply levels and digital signals.

Figure 7: Probe hook location

User Guide

8.2.3 Digital GPIOs

General-purpose inputs and outputs (GPIOs) are provided to ease integration of the development kit in a prototype. For example, digital inputs may be used as trigger inputs to fire the waveforms or to send information from the system to the development kit. Four pins can be configured as input or output.

Using these GPIOs implies to modify the firmware to support them. However, they are already physically implemented and routed to the MCU. They need to be activated in the firmware software code project.

Figure 8: GPIOs and GPIOs supply voltage configuration solder bridge location

By default, the GPIOs are in the microcontroller 3.3 V supply domain. To use these GPIOs with a system operating in another voltage domain requires modification of the BOS1921-KIT PCB configuration.

Table 9: GPIOs supply	/ voltage solder	bridge configuration
-----------------------	------------------	----------------------

GPIOs Supply Source	SB1 State
+3.3V (MCU supply)	Populated
VIO (1.62 V to 5.5 V)	Unpopulated

When SB1 is unpopulated, GPIOs supply voltage is provided by VIO and GND of the J3 connector. This J3 header connector is provided in the box but is not initially populated. Refer to the board schematics in section 9.1 for MCU pins numbers corresponding to IO0, IO0, IO2 and IO3.

CONFIDENTIAL

User Guide

8.2.4 External I2C

The BOS1921 features an I2C communication interface. By default, each BOS1921 are connected to the MCU I2C master. It is possible to bypass the MCU and use an external I2C master without separating the board. This can be useful when trying to connect a BOS1921 directly to an external system.

Figure 9: Comm selection switch and SPI header location

To use an external I2C, it is mandatory to enable it using the COMM Select switch on the board by setting it to EXT position. USB port must still be connected since it supplies the digital switches. When changing the position of COMM Select switch, the board must be power cycled (disconnect the USB cable and then reconnect it).

By default, the I2C signals are in the microcontroller 3.3 V supply domain. To use these signals with a system operating in another voltage domain requires modification of the BOS1921-KIT PCB configuration.

Table 10: SPIs supply voltage solder bridge configuration

I2C Supply Source	SB2 State
+3.3V (MCU supply)	Populated
VDDIO (1.62 V to 5.5 V)	Unpopulated

When SB2 is unpopulated, I2C supply voltage is provided by VDDIO and GND of the external I2C header connectors.

User Guide

BOS1921-KIT

8.2.5 Power Supply Source and UPI Mode Operation

The driver boards can be supplied from two different sources: the USB 5V or an external source. The J4 jumpers on the controller board selects which source to use. When using the USB supply, use the jumper to connect +5V pin and VBUS pin. When using an external supply, remove the jumper and connect the external source positive terminal to the VBUS pin, and the negative terminal to the GND pin. A different source may be used for each channel (driver board). By default, the USB connector is the power source.

Figure 10: Power supply source selection jumper location

User Guide

BOS1921-KIT

The H driver board supports both the UPI and non UPI configuration (see product datasheet for details). To use the non UPI mode, connect the J2 jumper, shorting VBUS and VDD. To use the UPI configuration, remove the jumper. UPI mode is disabled by default.

Figure 11: Driver board UPI mode configuration jumper location

Table 11: Power supply source and UPI mode configuration options

Supply Source	UPI Mode	Controller Board J4	Driver Board J2
USB 5V	Disable (non UPI)	Populated	Populated
USB 5V	Enable (UPI)	Populated	Unpopulated
External Supply	Disable (non UPI)	External	Populated
External Supply	Enable (UPI)	External	Unpopulated

Refer to the board schematics in section 9.1 to obtain more information regarding the power supply options. Refer to the BOS1921 datasheet to get more information regarding the UPI mode.

User Guide

BOS1921-KIT

8.2.6 Piezo Actuator Low-Pass Filter

Two 0603 resistors ROx are in series with each BOS1921 output channels OUTx. They can be used to create a low-pass filter with the actuator and filter out audible noise. Resistor values to use are determined by the desired cut-off frequency and the actuator capacitance. A bode plot is useful to assess the amplitude attenuation at the waveform frequency in order to compensate it in the programmed voltage waveform. Initially, the populated values are 0 ohm. When adding such resistors, it is recommended to also increase CHV capacitance value.

Figure 12: Low-pass filter resistors location

BOS1921-KIT

8.2.7 Reconfiguring the PS Board

By default, the PS board is populated to output a unipolar output waveform of amplitude slightly lower than the peak-to-peak programmed waveform (the waveform is shifted upward). Therefore, a programmed continuous ±95 V waveform will translate to a 0 to 180 V unipolar waveform on the actuator.

To change the board so the output is directly the programmed waveform (for example, a bipolar ±95 V waveform), make the following changes to the board (see schematic in section 9.3):

- Remove CS1, CS2, D1 and Rf+.
- Add a 0-ohm resistor on either CS1 or CS2 landing (green).
- Add a 0-ohm resistor on Rf+ (green).
- Do not repopulate the other landings (red).

Figure 13: Pump driver board component reconfiguration for direct waveform output

CONFIDENTIAL

User Guide

9 Design Reference

9.1 Schematics – Controller Board

User Guide

CONFIDENTIAL

User Guide

User Guide

User Guide

User Guide

CONFIDENTIAL

User Guide

CONFIDENTIAL

User Guide

9.3 Schematic – P Driver Board

BOS1921-KIT

9.4 PCB Layout – Controller Board

Figure 14: Layout view - Top Layer (not to scale)

Figure 15: Layout view - Bottom Layer (not to scale)

User Guide

BOS1921-KIT

9.5 PCB Layout – H Driver Board

Figure 16: Layout view - Top Layer (not to scale)

Figure 17: Layout view - Second Layer (not to scale)

Figure 18: Layout view - Third Layer (not to scale)

Figure 19: Layout view - Bottom Layer (not to scale)

User Guide

BOS1921-KIT

9.6 PCB Layout – P Driver Board

Figure 20: Layout view - Top Layer (not to scale)

Figure 21: Layout view - Second Layer (not to scale)

Figure 22: Layout view - Third Layer (not to scale)

Figure 23: Layout view - Bottom Layer (not to scale)

BOS1921-KIT

9.7 Bill of Materials – Controller Board

The following is a list of the components that populate the evaluation PCB. Due to availability, some components with equivalent performance/characteristics may be installed on the actual evaluation PCB. If the exact part number is not available, the components can be replaced by ones with equivalent package and specifications.

DESIGNATOR	QTY	VALUE	DESCRIPTION	MANUFACTURER	PART NUMBER
BUMP1, BUMP2, BUMP3, BUMP4, BUMP5	5		BUMPER CYLINDRICAL 0.25" DIA BLK	Keystone Electronics	783-B
C3V3, C5V, CUC7, CVBUS, CVDDIO	5	10µF	CAP CER 10UF 25V X5R 0603	Taiyo Yuden	TMK107BBJ106MA-T
C21.1, C31, C41.1, C41.2, C42.1, C42.2, C43.1, C43.2, C44.1, C44.2, C45.1, C45.2, C51.1, C51.2, C52.1, C52.2, CS1, CS2, CUC1, CUC2, CUC3, CUC4, CUC6, CUC8, CUC9, CUC10, CUC11, CUC12, CUC12,	20	0.1E	CAP CER 0.1UF 25V	Toivo Yudon	
0013	29	υ. τμε	CAP CER 10000PF 50V		
C21.2	1	0.01µF	X7R 0402	Taiyo Yuden	UMK105B7103KV-F
СЅН	1	330pF	CAP CER 330PF 250V C0G/NP0 0402	KEMET	C0402C331JAGACAUTO
CUC0	1	4.7µF	CAP CER 4.7UF 10V X5R 0402	TDK Corporation	C1005X5R1A475K050BC
CUC5	1	1µF	CAP CER 1UF 16V X5R 0402	TDK Corporation	CGB2A1X5R1C105K033B C
D1, D2, DA, DB	4	RGB	LED RGB 0606 SMD	Dialight	5977715607F
DCA, DCB	2		CONN HDR 14POS 0.1 GOLD SMD R/A	Würth Elektronik	610114249221
DPA, DPB	2	20V	DIODE SCHOTTKY 20V 1A SOD323F	Nexperia USA Inc.	PMEG2010AEJ,115
DUSB	1	5.5V	TVS DIODE 5.5V 14V 10USON	Texas Instruments	TPD4E05U06QDQARQ1
F1	1	0.5A	PTC RESET FUSE 15V 500MA 1812	Schurter Inc.	PFMF.050.2
J1	1		CONN RCP USB2.0 TYP C 24P SMD RA	GCT	USB4110-GF-A
J2	1		CONN HEADER SMD 10POS 1.27MM	CNC Tech	3221-10-0300-00-TR
J3	1		CONN HEADER R/A 6POS 2.54MM	Würth Elektronik	61300611021

Table 12: Bill of Materials for BOS1921-BRD-C01-B1

CONFIDENTIAL

User Guide

DESIGNATOR	QTY	VALUE	DESCRIPTION	MANUFACTURER	PART NUMBER
J4	1		CONN HEADER SMD 6POS 2.54MM	Amphenol ICC (FCI)	95278-101A06LF
JP1, JP2	2		CONN JUMPER SHORTING .100" GOLD	Sullins Connector Solutions	QPC02SXGN-RC
Q1, Q2	2		MOSFET P-CH 60V 2.2A TO236AB	Nexperia USA Inc.	PMV100EPAR
R31, R44.2, R44.4, RS1, RS2, RS3, RS4	7	5.1k	RES SMD 5.1K OHM 5% 1/10W 0402	Panasonic Electronic Components	ERJ-2GEJ512X
R44.1, R44.3	2	51	RES SMD 51 OHM 5% 1/10W 0402	Panasonic Electronic Components	ERJ-2GEJ510X
RA31, RA32, RA33, RA34, RA41, RA42.1, RA42.2, RA43, RA51, RA52	10	47	RES ARRAY 2 RES 47 OHM 0606	Panasonic Electronic Components	EXB-V4V470JV
RAD1, RAD2, RADA, RADB	4	470	RES ARRAY 2 RES 470 OHM 0404	Panasonic Electronic Components	EXB-24V471JX
RD1, RD2, RD31, RD32, RDA, RDB, RDIS1, RDIS2, RU31, RU32, RU33, RU34	12	1.5k	RES SMD 1.5K OHM 5% 1/16W 0402	Yageo	AC0402JR-071K5L
RSH	1	1Meg	RES SMD 1M OHM 1% 1/16W 0402	Yageo	RC0402FR-071ML
S1, S2	2		SWITCH TACTILE SPST-NO 0.05A 16V	Würth Elektronik	434133025816
S3, S4	2		SWITCH SLIDE SPDT 100MA 6V	Nidec Copal Electronics	CAS-120TA
SB1, SB2	2	0	RES SMD 0 OHM JUMPER 1/10W 0603	Yageo	RC0603JR-070RL
TP3V3, TPGND3	2		PC TEST POINT COMPACT	Keystone Electronics	5016
U21	1	3.3V	IC REG LINEAR 3.3V 300MA SOT23-5	STMicroelectronics	LDS3985M33R
U31	1		IC FLASH 16MBIT SPI/QUAD 8USON	Winbond Electronics	W25Q16JVUUIQ TR
U41, U42, U43, U44, U45, U51, U52	7		IC TRNSLTR BIDIRECTIONAL 8MSOP	Diodes Incorporated	PI4ULS5V202UEX
UC	1		IC MCU 32BIT 2MB FLASH 132-UFBGA	STMicroelectronics	STM32U585QII3

9.8 Bill of Materials – H Driver Board

Table 13: Bill of Materials for BOS1921-BRD-L01-B1

DESIGNATOR	QTY	VALUE	DESCRIPTION	MANUFACTURER	PART NUMBER
BUMP1, BUMP2, BUMP3, BUMP4	4		BUMPER CYLINDRICAL 0.25" DIA BLK	Keystone Electronics	783-B
CHV	1	0.01µF	CAP CER 10000PF 250V X7R 0805	TDK Corporation	CGA4J3X7R2E103K125A A
CHV2	1	3900pF	CAP CER 3900PF 250V C0G/NP0 0805	TDK Corporation	C2012C0G2E392J125AE
CPUMP, CREG, CVBUS, CVDDIO	4	0.1µF	CAP CER 0.1UF 25V X5R 0402	Taiyo Yuden	TMK105BJ104KV-F
CVDD	1	100µF	CAP TANT POLY 100UF 6.3V 1206	KEMET	T527I107M006ATE070
CYP*	1	1000pF	CAP CER 1000PF 250V C0G 0603	ТDК	CGA3E3C0G2E102J080A A
DZ	1	5.6V	DIODE ZENER 5.6V 500MW SOD-323F	Rohm Semiconductor	UFZVFHTE-175.6B
J1	1		CONN HEADER SMD R/A 14POS 2.54MM	Würth Elektronik	610114249121
J2	1		CONN HEADER VERT 2POS 2.54MM	Sullins Connector Solutions	PRPC002SAAN-RC
L1	1	10µH	FIXED IND 10UH 1.48A 415 MOHM	TDK Corporation	VLS3012HBX-100M
OUT	1		TERM BLOCK HDR 3POS 90DEG 3.81MM	Molex	395121003
R1, R2, R3, R4	4	1.5k	RES SMD 1.5K OHM 5% 1/16W 0402	Yageo	AC0402JR-071K5L
R5, R6	2	51	RES SMD 51 OHM 5% 1/10W 0402	Panasonic Electronic Components	ERJ-2GEJ510X
Rf-, Rf+	2	0	RES SMD 0 OHM JUMPER 1/10W 0603	Yageo	RC0603JR-070RL
RS	1	0.2	RES 0.2 OHM 1% 1/8W 0402	TE Connectivity Passive Product	RLP73N1ER20FTDF
TPGND	1		PC TEST POINT COMPACT	Keystone Electronics	5016
U1	1		PIEZO HAPTIC DRIVER	Boreas Technologies	BOS1921CQ

* These components are not populated on the PCB, the proposed part numbers are for reference only.

9.9 Bill of Materials – P Driver Board

Table 14: Bill of Materials for BOS1921-BRD-S01-B1

DESIGNATOR	QTY	VALUE	DESCRIPTION	MANUFACTURER	PART NUMBER
BUMP1, BUMP2, BUMP3, BUMP4	4		BUMPER CYLINDRICAL 0.25" DIA BLK	Keystone Electronics	783-B
CHV	1	4700pF	CAP CER 4700PF 200V X7R 0603	KEMET	C0603Y472K2RAC7867
CPUMP, CREG, CVBUS, CVDDIO	1	0.105	CAP CER 0.1UF 25V		TMK105B 1104K\/-E
CS1, CS2	2	1uF	CAP CER 1UF 100V X7S 0805	TDK Corporation	CGA4J3X7S2A105K125A E
CVDD	1	10µF	CAP CER 10UF 25V X5R 0603	TDK Corporation	C1608X5R1E106M080AC
CYP*	1	1000pF	CAP CER 1000PF 250V C0G 0603	ТDК	CGA3E3C0G2E102J080A A
D1	1	250V	DIODE GEN PURP 250V 250MA SOD523	Nexperia USA Inc.	BAS521BX
DZ	1	5.6V	DIODE ZENER 5.6V 500MW SOD-323F	Rohm Semiconductor	UFZVFHTE-175.6B
J1	1		CONN HEADER SMD R/A 14POS 2.54MM	Würth Elektronik	610114249121
L1	1	68µH	FIXED IND 68UH 430MA 2.362OHM SM	TDK Corporation	VLS3012CX-680M-1
OUT	1		TERM BLOCK HDR 2POS 90DEG 3.81MM	Molex	0395121002
R1, R2, R3, R4	4	1.5k	RES SMD 1.5K OHM 5% 1/16W 0402	Yageo	AC0402JR-071K5L
R5, R6	2	51	RES SMD 51 OHM 5% 1/10W 0402	Panasonic Electronic Components	ERJ-2GEJ510X
Rf-	1	0	RES SMD 0 OHM JUMPER 1/10W 0603	Yageo	RC0603JR-070RL
Rf+	1	20k	RES SMD 20K OHM 1% 1/10W 0603	Panasonic Electronic Components	ERJ-3EKF2002V
RS	1	1	RES SMD 1 OHM 1% 1/6W 0402	Panasonic Electronic Components	ERJ-2BQF1R0X
TPGND	1		PC TEST POINT COMPACT	Keystone Electronics	5016
U1	1		PIEZO HAPTIC DRIVER 190V	Boreas Technologies	BOS1921CW

* These components are not populated on the PCB, the proposed part numbers are for reference only.

BOS1921-KIT

10 FAQ and Troubleshooting

Please refer to Boréas website for FAQ and Troubleshooting information, which will be maintained throughout the BOS1921-KIT lifecycle. It will also contain application note documents that will be helpful for the user writing his/her own code to operate the BOS1921.

11 Notice and Warning

Danger High Voltage!

Electric shock possible when connecting board to live wire. Board should be handled with care by a professional. For safety, use of isolated test equipment with overvoltage and/or overcurrent protection is highly recommended.

This product uses semiconductors that can be damaged by electrostatic discharge (ESD). When handling, care must be taken so that the devices are not damaged. Damage due to inappropriate handling is not covered by the warranty.

The following precautions must be taken:

- Do not open the protective conductive packaging until you have read the following and are at an approved anti-static workstation.
- Use a conductive wrist strap attached to a good earth ground.
- If working on a prototyping board, use a soldering iron or station that is marked as ESD-safe.
- Always disconnect the microcontroller from the prototyping board when it is being worked on.
- Always discharge yourself by touching a grounded bare metal surface or approved anti-static mat before picking up an ESD sensitive electronic component.
- Use an approved anti-static mat to cover your work surface.

Oscilloscope measurements:

Both OUT+ and OUT- are active outputs. When measuring these signals using an oscilloscope, use a separate probe on each output. Never connect the ground of a probe to one of these outputs. Doing so might damage the BOS1921-KIT and/or your oscilloscope. For more information, please consult the *Probing BOS1901 with an Oscilloscope* application note available for download on <u>https://www.boreas.ca/pages/support</u>.

12 Ordering Information

Table 15: Ordering information

	ORDERING PART NUMBER	DIMENSIONS	PACKING FORMAT	QUANTITY	ACCESSORIES
1	BOS1921-KIT-B01 (Starter Set)	Controller PCB 65x50 mm Driver PCBs 40x22 mm	Box (5 ^{1/4} x3 ^{3/4} x1 ^{1/4})"	1 controller board 1 haptic driver board 1 pump driver board 4 load capacitors	4 load capacitors (10nF, 47nF, 100nF, 470nF)

13 Document History

ISSUE	DATE	Document Number	CHANGES
2	October 2023	BT015BUG01.01	Updated boards. Removed GUI section (now self-documented in the application).
1	December 2022	BT015AUG01.01	Original Document.

Appendix A. Firmware Upgrade using STM32CubeProgrammer

The BOS1921-KIT board supports a standard USB endpoint named "Device firmware upgrade" (DFU). This endpoint is used to transfer firmware to the development kit using the USB port and a DFU transfer software. To advertise the DFU endpoint on the USB port, the BOS1921-KIT board microcontroller needs to execute DFU application in the system memory. The boot selection switch allows to select the system memory.

Figure 24 : Boot selection switch position

Prerequisites

- **1.** Download STM32CubeProgramme using this <u>link</u> and follow web page instruction.
- 2. Install STM32CubeProgrammer.
- 3. Move the Boot Select switch in System Memory (SM) position.
- **4.** Connect the BOS1921-KIT board to a PC using a USB cable.
- **5.** Start SMT32CubeProgrammer.
- 6. Reset the BOS1921-KIT board using the RST button.
- 7. Have the appropriate firmware binary file (.hex) handy. The firmware compatible with the Software are located in the installation directory (C:\Program Files (x86)\Boréas Development Kit\firmware). Older firmware revisions can be downloaded on the <u>Boréas website</u>.

User Guide

CONFIDENTIAL

Procedure

- 1. Select USB connection mode in the drop box.
- 2. Refresh the Port list using the button:
- 3. Select USB1 port in the Port drop box. (Note: If more than one development kit are connected on the same PC the Port drop box will contains more than one entry. USB1 may not be the right device.)
- 4. Click on Connect button.

Figure 25: STM32CubeProgrammer connection setting

- on the left side of the interface to open the *Erase & Programming* panel. 5. Click on this icon
- 6. Enter the path to the firmware file (.hex) into the *File Path* text field.
- 7. Check the Verify programming checkbox.
- Click on Start Programming button. 8.

		Erasing & Programming		
		Download		
5		File path \BoreasDevKit_Release.hex	▼ Browse	6
\smile	OB	Start addr		
	CPU	Verify programming 7		
	swv	Run after programming	Start Programm	8
		Automatic Mode		
		Full chip erase		
		Download file		
		Option bytes commands		
			Start automatic mode	

Figure 26: STM32CubeProgrammer programming setting

Wait the pop-up message indicating the upgrade completion. 9.

Figure 27: STM32CubeProgrammer upgrade completed dialog.

- **10.** Move the Boot Select switch in Flash Memory (FM) position.
- **11.** Reset the development kit using the RST button.

BOS1921-KIT

Appendix B. Audio Mode using Audacity[®] Software

This appendix explains how Audacity[®] software can be used to create and play waveforms on the BOS1921-KIT.

B.1 Software Installation Procedure

Audacity is free of use and can be found at: link

Please follow the Audacity[®] installation procedure.

Refer to <u>https://www.audacityteam.org/about/license/</u> for the terms of GNU General Public License (GPL) for Audacity[®] use.

dc-offset Plugin Installation (optional)

This plugin will be useful to create waveforms for unipolar piezo actuators or for piezo actuators that have an asymmetrical voltage range (like the TDK piezo supplied with the kit).

- 1. Download the plugin: link.
- 2. Install the plugin downloaded using the Nyquist Plug-in Installer.

Figure 28: dc-offset plugin installation

3. Ensure the plugin is enabled.

Figure 29: Access plugin management window

4. Select dc-offset in the plugin list and click on *Enable* button, then click on *OK*.

dc-offset Delay	New	C:\Users\FrancisLacasse\AppData\Roaming\audacity\Plug-Ins\dc-offset			
Delay					
	Enabled	C:\Program Files (x86)\Audacity\plug-ins\delay.ny			
Distortion	Enabled	Built-in Effect: Distortion			
DTMF Tones	Enabled	abled Built-in Effect: DTMF Tones			
Echo	Enabled	Built-in Effect: Echo			
eq-xml-to-txt-converter	New	C:\Program Files (x86)\Audacity\plug-ins\eq-xml-to-txt-converter.ny			
Fade In	Enabled	Built-in Effect: Fade In			
Fade Out	Enabled	Built-in Effect: Fade Out			
<		>			

Figure 30: Plugin management window

BOS1921-KIT

User Guide

BOS1921-KIT

B.2 Use Audacity to Play WAV Files

Description

Download waveform samples from Boréas website and use Audacity® to play them on the BOS1921-KIT.

Prerequisites

- BOS1921-KIT board is in Audio mode.
- Using the BOS1921-KIT software, user has configured the audio limiting settings of the board (see details <u>here</u>)
- Download the waveform examples from the Boréas web site (link)

A TDK_60/range_oneactuator —	
File Edit Select View Transport Tracks Generate Effect Analyze Tools Help	
Windows WASAPI 🔧 Jack Mic (RealtekiR) Audio) 🗸 2 (Stereo) Recording Chann 🗸 🏟 Speakers (Boreas DevKit) 🗸 🚺	
	8.0
x TOK SOVian	^
	1114400
Mono, 2000Hz -0,5-	
32-bt formi ▲ Select 1.0	
	, i i i i i i i i i i i i i i i i i i i
c	>
Project Rate (Hz) Snap-To Start and End of Selection	
8000 V 0ff V 00h00m00.0000s ⁴ 00h00m00.0000s ⁴	
Stopped.	

Figure 31: Use audacity to play a WAV file

Steps

- 1. Start Audacity software.
- Select the Speakers (Boreas DevKit) from the playback device selection menu. If the Boreas DevKit is not shown in the list, validate that the device kit in in audio mode and that it is connected to the PC. Then from the Audacity menu, click on *Transport / Rescan Audio Devices*.
- 3. Drag the desired WAV file (Ex: TDK_60Vrange_oneactuator.wav) into Audacity to add a new audio track.
- 4. Press the play button to start playing the waveform on the piezo actuator.

User Guide

BOS1921-KIT

B.3 Use Audacity and dc-offset Plugin to Create a New Waveform.

Description

In this example, we explain how Audacity can be used to create a new sinusoidal waveform in the range of the TDK piezo supplied with the kit (-10 V to 60 V).

In this example the waveform parameters are:

- Amplitude peak to peak = Piezo Vmax Piezo Vmin = 60 (-10) = 70 V
- Frequency = 125 Hz
- Duration = 10 sec

Prerequisites

- BOS1921-KIT board is in audio mode.
- Audacity and the dc-offset plugin are installed.

Figure 32: Audacity - simple waveform creation

Steps

- 1. Open Audacity.
- 2. Select the Speakers (Boreas DevKit) from the playback device selection menu.
- 3. In the bottom left corner of Audacity, set the project rate to 8000 Hz.
- In the application menu, select the Option "Generate / Tone".
 To create the waveform with the parameters mentioned in the description, use the following tone values:

User Guide

Tone	- 🗆 X
Waveform:	Sine 🗸
Frequency (Hz):	125
Amplitude (0-1):	0.368
Duration:	00h00m10.000s
Manage Preview	OK Cancel ?

Figure 33: Tone parameters

The amplitude value is calculated with the following formula:

Amplitude = $\frac{\text{Peak to Peak Amplitude}}{\text{Boreas IC amplitude max}} = > \frac{(60) \text{ V} - (-10) \text{ V}}{190 \text{ V}} = > 0.368$

5. Use dc-offset plugin to offset the signal in the piezo range: Offset computation:

$$\frac{Piezo Vmax + Piezo Vmin}{Boreas IC amplitude max} => \frac{60 V + (-10 V)}{190 V} => 0.263$$

From the application menu, select *Effect / DC offset...* and enter the value calculated above.

DC offset	- 🗆 X
Apply or remove DC offset:	Add offset \checkmark
Offset removal method:	Absolute ~
How much offset to add (+/- 1): 0.263	
Manage Preview Debu	g OK Cancel

Figure 34: Add dc-offset

6. Play the wave using the play button.

Information relating to products and circuits furnished herein by Boréas Technologies Inc. is believed to be reliable. However, Boréas Technologies assumes no liability for errors that may appear in this document, or for liability otherwise arising from the application or use of any such information which may result from such application or use. The products, their specifications and the information appearing in the document are subject to change by Boréas Technologies without notice. Boréas Technologies products must not be used in life-critical medical equipment, where failure of such equipment would cause serious bodily injury or death, unless both parties have executed an agreement specifically governing such use. Trademarks and registered trademarks are the property of their respective owners.

Design Kits, or modules (Mockup), including software, and specifications are intended for developers in a research and development to evaluate standard Boréas products. Design Kits, or modules (Mockup) are not finished products and shall not be used for finished product. Design Kits, or modules (Mockup) may not be sold for commercial purposes by users, in whole or in part, or used in any finished product or production.

https://www.boreas.ca/pages/general-terms-and-conditions https://www.boreas.ca/pages/specific-terms-for-the-development-kit