

BOS0614 Four-Channel Piezo Haptic Driver with Integrated Sensing

1 Features

BOS0614

Product Datasheet

- Four-Channel 60 V Low Power Piezo Driver
 - Drives up to four actuators simultaneously
 - Energy Recovery
 - Small Solution Footprint
- Advanced Piezo Sensing Interface
 - o 10 kSps Sample Rate
 - 100 μs Detection Latency
 - Zero Power Sensing for Wake-up
 - Automatic Handling of Customized Press and Release Haptic Feedback
 - $\circ~~220\,\mu\text{V}$ Force Sensing Resolution
- Integrated Digital Front End with I3C/I²C
 - o 1024 Samples FIFO
 - o 2 kB RAM Waveform Memory
 - Waveform Synthesizer (WFS)
 - 1.2 V to 1.8 V Digital I/O Supply
 - State Retention in SLEEP Mode
- Four GPIOs
 - Open-Drain / Push-Pull
 - o Mechanical Button Replacement
 - External Trigger Inputs
- Fast Start-Up Time
- Wide Input Voltage Range of 3 V to 5.5 V

2 Applications

- Smartphones
- Seamless User Interface
- Human-Machine Interface

Figure 1: Simplified schematic

3 Description

The BOS0614 is a multi-channel piezo haptic driver based on Boréas' patented CapDrive[™] technology. It can drive up to four piezo actuators simultaneously at 60 V. Its Zero Power Sensing (ZPS) capabilities enables the replacement of mechanical buttons in many applications.

The internal 10 kSps sensing interface allows programming of custom press and release haptic feedback on each channel. When detection conditions are met. the BOS0614 can automatically play the programmed haptic feedback and send a notification via four GPIOs 100 µs. The active-low within open-drain configuration of the outputs enable generating signals identical to mechanical buttons for easy integration in a legacy system.

The four GPIOs can be used as an external trigger and connected directly to the outputs of a touch controller to achieve low latency haptic feedback.

Data and configuration can be communicated easily to the BOS0614 through its two-wire MIPI I3C interface. MIPI I3C is backward compatible with I²C for easy integration in most systems. A flexible deep FIFO interface enables the continuous streaming of the digital waveform data for playback or to transmit burst data for more bandwidth efficiency. The interface also integrates a waveform synthesizer and 2 kB RAM waveform memory to generate HD haptic waveforms with minimum communication bandwidth enabling two waveform generation modes: RAM Playback and RAM Synthesis.

Various safety systems protect the BOS0614 from damage in case of a fault.

Table 1: Product information

PART NUMBER	DESCRIPTION
BOS0614CW	WLCSP 30B 2.1mm × 2.5mm

See section 11 for ordering information.

TABLE OF CONTENT

1 FEATURES	1
2 APPLICATIONS	1
3 DESCRIPTION	1
4 BUMPS CONFIGURATION AND FUNCTIONS	2
5 SPECIFICATIONS	5
5.1 Absolute Maximum Ratings	5
5.2 RECOMMENDED OPERATING CONDITIONS	5
5.3 ELECTRICAL CHARACTERISTICS	6
5.4 TIMING CHARACTERISTICS	7
5.5 Typical Performance Characteristics	10
6 FUNCTIONAL DESCRIPTION	12
6.1 OVERVIEW	12
6.2 FEATURES	
6.3 DIGITAL INTERFACE	19
6.4 DIRECT MODE	23
6.5 FIFO MODE	23
6.7 KAIVI SYNTHESIS MIODE	2/ 20
6.8 PIEZO ACTUATOR SENSING	
6.10 WES COMMAND INTERDRETER	
	84 07
7.1 TYPICAL SCHEMATICS	
7.2 EXTERNAL COMPONENTS	
7.5 DESIGN METHODOLOGY: PROGRAMMING	
8 PCB LAYOUT EXAMPLE	90
9 MECHANICAL INFORMATION	91
9.1 WLCSP Package Description	
9.2 WLCSP PACKAGE SOLDERING FOOTPRINT	
9.3 WLCSP REFLOW	
9.4 TAPE AND REEL SPECIFICATIONS	94
10 KNOWN ISSUES	96
10.1 WAKE-UP FROM SLEEP MODE	
10.2 Device Reset	
10.3 CALIBRATION	96
11 ORDERING INFORMATION	98
12 DOCUMENT HISTORY	99
13 NOTICE AND WARNING	100

4 Bumps Configuration and Functions

Figure 2: Wafer-Level Chip Scale Package WLCSP 30B 2.1mm × 2.5mm (TOP VIEW; NOT TO SCALE)

Table 2: Pin description

PIN NO.	PIN NAME	TYPE	DESCRIPTION
A1	RM	Input	Current sense negative input
A2	REG	Power	Internal 1.8 V regulator
A3	GPIO2	Input/Output	General-purpose input output
A4	GPIO1	Input/Output	General-purpose input output
A5	SDA	Input/Output	I3C data
B1	RP/VDD	Input/Power	Current sense positive input / Supply
B2	ТМ	-	Tie to GND
B3	GPIO3	Input/Output	General-purpose input output
B4	GPIO0	Input/Output	General-purpose input output
B5	SCL	Input	I3C clock
C1	PUMP	Power	5V internal charge pump
C2	TST1	-	No connect
C3	GND	Power	Supply ground
C4	GND	Power	Supply ground
C5	VDDIO	Power	Digital I/O supply
D1	VBUS	Power	Main supply voltage
D2	PGND	Power	Supply ground power stage
D3	PGND	Power	Supply ground power stage
D4	TST0	-	No connect
D5	VBUS	Power	Main supply voltage
E1	VDDP	Power	Intermediate supply voltage
E2	OUT1	Output	Piezo output 1
E3	SW	Power	Internal power converter switch pin
E4	OUT2	Output	Piezo output 2
E5	VDDP	Power	Intermediate supply voltage
F1	OUT0	Output	Piezo output 0
F2	HV	Output	HV output
F3	SW	Power	Internal power converter switch pin
F4	HV	Output	HV output
F5	OUT3	Output	Piezo output 3

5 Specifications

5.1 Absolute Maximum Ratings

Table 3: Absolute maximum ratings⁽¹⁾⁽²⁾

	SYMBOL	PARAMETER	MIN	NOM	MAX	UNIT
1		Voltage at pins OUT0, OUT1, OUT2, OUT3, HV, SW	-0.3		70	V
2		Voltage at pins SCL, SDA	-0.3		2.3	V
3		Voltage at all other pins	-0.3		7	V
4	T _{stg}	Storage temperature	-65		150	°C
5	TJ	Operating junction temperature	-40		150	°C

(1) Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.
 (2) Voltages specified in the table are with respect to GND and PGND unless otherwise stated.

5.2 Recommended Operating Conditions

	SYMBOL	PARAMETER	CONDITIONS	MIN	NOM	MAX	UNIT
1	T _A	Operating Temperature	Operating free-air temp.	-40		85	°C
2	V _{bus} , V _{dd,} V _{ddp}	Supply voltage		3		5.5	V
3	V _{DDIO} ⁽²⁾	I/O Supply voltage		1.08		1.98	V
4	I _{pk-OUT} ⁽³⁾	Peak transient current per channel	Z_L = 935 Ω, V_{OUT} = 60 V, V_{DD} = 3 V			1	A
5	L1	Inductance			10		μH
6	R _{sense} ⁽⁴⁾	Sense resistor		130			mΩ
7	C _{HV2}	Capacitor on HV pin			1.5		nF
8	fout	Output frequency	<u>RAM [1:0]</u> = 0x3	3.9		1000	Hz

Table 4: Recommended operating conditions⁽¹⁾

(1) Voltages specified in the table are with respect to GND and PGND unless otherwise stated.

(2) Digital I/O voltage (V_{DDIO}) must match the communication interface voltage.

(3) See Figure 13 for SOA and see section 7.4.1 for the maximum current calculation.

(4) R_{sense} value of 130 m Ω limits the current in L_1 inductor and SW pin (I_{pk}) to 2 A. See section 7.4.4 for R_{sense} selection.

5.3 Electrical Characteristics

Table 5: Electrical characteristics. Conditions: $T_A = 25$ °C, $V_{BUS} = V_{DD} = V_{DDP} = 3.6$ V, $V_{DDIO} = 1.8$ V (unless otherwise noted)⁽¹⁾

	SYMBOL	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
1	V_{REG}	Voltage at REG pin		1.75	1.80	1.85	V
2	VIL	Digital low-level input voltage	SDA, SCL	-0.3		0.3×V _{DDIO}	V
3	V _{IH}	Digital high-level input voltage	SDA, SCL	0.7×V _{DDIO}		0.3+V _{DDIO}	V
4	V _{OL}	Digital low-level output voltage	SDA, $V_{DDIO} < 1.4V$ SDA, $V_{DDIO} \ge 1.4 V$			0.18 0.27	V
5	V _{OH}	Digital high-level output voltage	SDA	0.8×V _{DDIO}			V
6	VIL	Digital low-level input voltage	GPIOO, GPIO1, GPIO2, GPIO3	-0.3		0.54	V
7	VIH	Digital high-level input voltage	GPIOO, GPIO1, GPIO2, GPIO3	1.26		V _{DD} +0.3	V
8	V _{OL}	Digital low-level output voltage	GPIOO, GPIO1, GPIO2, GPIO3			0.18	V
9	V _{OH} ⁽²⁾	Digital high-level output voltage	GPIOO, GPIO1, GPIO2, GPIO3	0.85×V _{DD}			V
10	tt	Input transition time of SCL, SDA	VDDIO = 1.8 V, VDDIO = 1.2 V			19.2 72	ns
11	V _{OUT(FS)}	Full-scale output voltage		58.8	60	61.2	V
12	I _{Q_VBUS}	V _{BUS} supply quiescent current	SLEEP SLEEP (ZPS 4 Ch.) IDLE ⁽³⁾ IDLE (Sensing 4 Ch.) ⁽⁴⁾		4 8 900 1170		μΑ
13	I _{vbus,avg}	Average V _{bus} supply current during operation	$f_{OUT} = DC$ $V_{OUT} = 60 V$ $C_L = 440 nF$		5		mA
			$F_{OUT} = 300 \text{ Hz}$ $V_{OUT} = 60 \text{ V}$ $C_L = 440 \text{ nF}$		46		mA
14	THD+N	Total Harmonic Distortion + Noise	f_{OUT} = 300 Hz V _{OUT} = 60 V C _{L-Tot} = 875 nF			1	%
15	f _{s-FIFO}	FIFO playback sample rate	<u>PLAY [2:0]</u> = 0x0 <u>PLAY [2:0]</u> = 0x7	1008 7.875	1024 8	1040 8.125	ksps
16	ZTH	Zero Power Sensing (ZPS) Threshold	ZPS_SENS = 0x0 (high sensitivity)		350		mV
			ZPS_SENS=0x1 (low sensitivity)		550		mV

	SYMBOL	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
17	PSR	Piezo Sensing Resolution	SENSEDATAx Register		220		μV
18	DHL	Detection to haptic feedback maximum latency	<u>SHORT [1:0]</u> = 0x0			500	μs
19	DGL	Detection to GPIOx notification maximum latency	REP [2:0] = 0x0			100	μs
20	f _{s-sens}	Sensing sample rate per channel	<u>CHx</u> = 0x1		10		kSps

(1) Voltages specified in the table are with respect to GND and PGND unless otherwise stated.

(2) The minimum digital high-level output voltage (V_{OH}) is for push-pull configuration only.

(3) The I_{Q_VBUS} condition IDLE is the quiescent current in IDLE mode with sensing disabled on all channels.

(4) The IQ_VBUS condition IDLE (Sensing 4 Ch.) is the quiescent current in IDLE mode with sensing enabled on all channels.

5.4 Timing Characteristics

5.4.1 I²C

Table 6: Timing characteristics. Condition: I^2C communication mode, $T_A = 25^{\circ}C$, $V_{DDIO} = 1.8$ V, SDA/SCL load = 50 pF

	SYMBOL	PARAMETER	FAST M	ODE	FAST M	ODE +	UNIT
			MIN	MAX	MIN	MAX	
1	f _{SCL}	SCL clock frequency	0	0.4	0	1.0	MHz
2	t _{LOW}	SCL low period	1300		500		ns
3	t _{HIGH}	SCL high period	600		260		ns
4	t _R	SDA/SCL rise time	20	300	-	120	ns
5	t _F	SDA/SCL fall time	-	300	-	120	ns
6	t _{su_dat}	Data setup time	100		50		ns
7	t _{HD_DAT}	Data hold time	0	-	0	-	ns
8	t _{su_sta}	Setup time for a repeated	600		260		ns
		START condition					
9	$t_{\text{HD}_{\text{STA}}}$	Hold time for a (repeated)	600		260		ns
		START condition					
10	t _{su_sto}	Setup time for STOP condition	600		260		ns
11	t _{BUF}	Bus free time (time between	1300		500		ns
		the STOP and START					
		conditions)					
12	t _{SPIKE}	Spike suppression pulse width	0	50	0	50	ns

BOS0614 Product Datasheet

Figure 3: I²C timing diagram

5.4.2 I3C

Table 7: Timing characteristics. Condition: I3C push-pull, T_A = 25°C, V_{DDIO} = 1.8 V, SDA/SCL load = 50 pF

	SYMBOL	PARAMETER	MIN	MAX	UNIT
1	f _{SCL}	SCL clock frequency	0.01	12.5	MHz
2	t _{LOW}	SCL low period	24		ns
3	t _{нібн}	SCL high period	24	41 ⁽¹⁾	ns
4	t _{CR}	SCL rise time		The minimum between, whether 150×10 ⁶ /f _{SCL} or 60	ns
7	t _{CF}	SCL fall time		150e6/ f _{scL} (60 max.)	ns
8	t _{su}	Data setup time	3		ns
9	t _{HD (master)}	Data hold time	t _{CR} +3, t _{CF} +3		ns
10	t _{HD (slave)}	Data hold time	0		ns
11	t _{CBSr}	Clock before repeated START condition	19.2		ns
12	t _{CAS}	Clock after START condition	38.4		ns
13	t _{CASr}	Clock after repeated START condition	38.4		ns
14	t _{CBP}	Clock before STOP condition	19.2		ns
15	t _{AVAL}	Bus available	1		μs

(1) This maximum high period may be exceeded when the signals can be safely seen by legacy l^2C devices.

Figure 4: I3C push-pull timing diagram

BOS0614 Product Datasheet

5.5 Typical Performance Characteristics

Conditions: TA = 25°C, V_{BUS} = 3.6 V, L_1 = 10 μ H, C_L = 440 nF, f_{OUT} = 300 Hz, V_{OUT} = 60 V sine waveform (unless otherwise noted)

Figure 11: Package Temperature Rise vs Output Frequency

Figure 13: SOA, V_{OUT} vs Per-Channel Load Impedance (Z_L) and Total Load Impedance (Z_{L-tot})

Figure 12: Output Frequency Variation vs T_A

Figure 14: Typical Latency from detection event¹

¹ The latency is measured from the GPIO falling edge with the according <u>GPIOx [3:0]</u> bits set to 0x1 and <u>SHORT</u> bits set to 0x0.

6 Functional Description

6.1 Overview

The BOS0614 is a highly integrated low-power multi-channel piezo actuator driver with integrated digital front end and advanced sensing interface based on Boréas Technologies patented CapDrive[™] technology. The BOS0614 requires a single low-voltage supply and a few passive components to generate waveforms up to 60 V_{pk} on four channels.

The digital interface enables the user to stream the waveform data from any MCU with an I3C or I²C port to the BOS0614. A flexible FIFO interface enables the generation of haptic playback by streaming the digital waveform data or transmitting burst digital waveform data for more bandwidth efficiency. Waveforms can be generated by reading data from the FIFO at various sample rates. The digital frontend also integrates a Waveform Synthesizer (WFS) and 2 kB on-chip RAM with two waveform generation modes: RAM playback and RAM synthesis. These two modes allow the generation of haptic waveforms with minimal intervention from the host MCU.

The BOS0614 integrates a 10 kSps advanced sensing interface that allows the creation of systems with up to four piezo actuators that can replace mechanical buttons and provide an enhanced user interface. Piezo actuator press/release trigger conditions can be programmed for each channel to detect that a user pressing a piezo actuator with 100 μ s latency and automatically trigger a haptic waveform feedback. All four GPIOs can be configured as active low open-drain outputs, facilitating the replacement of mechanical buttons with piezo actuators. Finally, a Zero Power Sensing (ZPS) feature allows a piezo actuator press detection event to wake up the BOS0614 from SLEEP mode.

The BOS0614 is designed to operate with a 10 μ H inductor. The L₁ inductor value can be adjusted to achieve an optimal power / size / performance trade-off for a given application. See section 7.4.3 for more details.

With a start-up time of less than 500 μ s from SLEEP mode, the BOS0614 can be used in applications where low latency is critical such as touch-enabled devices.

6.2 Features

6.2.1 Digital Front-End Interface

The BOS0614 uses an I3C slave interface supporting SDR communication up to 12.5 Mbps. This high-speed communication interface enables multiple ICs to share a common communication bus. The BOS0614 digital front-end enables waveform data to be stored in memory. The digital interface also provides access to internal registers which control the BOS0614 operation and performance, see section 6.3 for more details.

6.2.2 GPIO

Four general-purpose input / output (GPIOs) are available supporting push-pull (between VDD and GND) or open-drain configuration (a 1.5 k Ω pull-up resistor or greater is required between VDD and GPIO pins). These GPIOs can be used to replace mechanical button switches in legacy systems, as interruption to notify the host MCU of various events such as haptic detection events, or as input to trigger haptic waveform output.

6.2.3 Flexible Waveform Generation

6.2.3.1 Direct Mode

With bits <u>RAM [1:0]</u> set to 0x0, the haptic waveform samples are played as they are sent from the host MCU to the RAM using <u>REFERENCE</u> register. The rate at which the RAM data is read to generate the haptic waveform is set by bits <u>PLAY [2:0]</u>. See section 6.4 for details.

6.2.3.2 FIFO Mode

The digital front-end gives access to a 1024-sample FIFO for waveform playback with bits <u>RAM [1:0]</u> set to 0x1. FIFO entries are appended every time waveform samples are written in the <u>REFERENCE</u> register. Digital samples are represented as 12-bit unsigned values. If bit <u>OE</u> is set to 0x1, the FIFO entries are read automatically out of the FIFO at a rate set by bits <u>PLAY [2:0]</u>. See section 6.5 for details.

6.2.3.3 RAM Playback Mode

The RAM Playback mode is selected with bits <u>RAM [1:0]</u> set to 0x2. In the RAM Playback Mode, the on-chip RAM of 2 kB is used to store haptic waveforms as waveform amplitude samples in 12-bit unsigned format. The waveform is sampled at a rate set by bits <u>PLAY [2:0]</u>. See section 6.6 for more details.

6.2.3.4 RAM Synthesis Mode

The RAM Synthesis mode is selected with bits <u>RAM [1:0]</u> set to 0x3. With this mode, the BOS0614 uses the Waveform Synthesizer (WFS) to generate waveforms using parameters stored in the 2 kB RAM. The RAM Synthesis mode allows the generation of sinusoidal waveforms of various amplitudes and frequencies without having to send every sample of the waveform to RAM as is the case with RAM Playback mode. This allows to produce complex waveforms with minimal data communication. See section 6.7 for details.

6.2.4 Adjustable Internal Clock

The BOS0614 internal clock oscillator frequency is trimmed during fabrication (using hardware fuses, see Figure 36) and the <u>TRIM</u> register allows it to be adjusted. This feature can be used to match the external system clock frequency with the BOS0614 internal clock frequency, which is used to determine the FIFO read-out rate. This might be needed to minimize waveform distortion due to data loss when the host MCU writes waveform samples at a constant rate to the FIFO. To successfully adjust oscillator frequency, bit <u>OE</u> must be set to 0x0.

Note that changing the internal oscillator frequency may induce circuit malfunction and is not recommended for normal operation.

The internal oscillator can be adjusted with the following sequence:

- 1. Set <u>OE</u> bit to 0x0.
- 2. Set <u>TRIM.TRIMRW [1:0]</u> bits to 0x2.
- 3. Wait for 1 ms.
- 4. Read <u>TRIM.TRIM_OSC [6:0]</u> bits to read the internal oscillator trim value specific to the current chip.
- 5. Set <u>TRIM.TRIM_OSC [6:0]</u> bits to the desired value and set <u>TRIM.TRIMRW [1:0]</u> bits to 0x3.

The same procedure can be used to adjust the internal 1.8V regulator voltage using bit <u>TRIM_REG [2:0]</u> instead of <u>TRIM_OSC [6:0]</u>.

6.2.5 SLEEP Mode

When no output waveform is being requested (bit <u>OE</u> set to 0x0), the BOS0614 can enter in one of the two low power modes: IDLE or SLEEP mode. Bit <u>DS</u> sets the BOS0614 power mode when no output waveform is requested. By default, the power mode is IDLE (bit <u>DS</u> set to 0x0). SLEEP mode is selected when bit <u>DS</u> is set to 0x1. In SLEEP mode, the BOS0614 is in its lowest power state and all registers, and the RAM hold their values. In I3C, the dynamic address assignment can be performed without waking up the BOS0614.

The device can wake up from SLEEP mode by either a ZPS event (as detailed in section 6.2.9) or a communication on $I^2C/I3C$ bus (the data will not have any effect on the configuration of the registers).

Refer to section 7.3.3 for the detailed start-up sequence from SLEEP mode.

6.2.6 Device Reset

The BOS0614 has software-based reset functionality. When bit <u>RST</u> is set to 0x1, all registers are set to their default value and the BOS0614 goes into IDLE mode. Note that if a waveform was playing when resetting, output goes back to 0 V.

6.2.7 Low Latency Startup

The BOS0614 features a fast start-up time. From IDLE or SLEEP mode, the device takes approximately 500 μ s to start playing the waveform when auto-calibration piezo zeroing is set to 500 μ s with <u>SHORT [1:0]</u> bits set to 0x0 (see Figure 14). This makes the BOS0614 a very small contributor to system latency.

6.2.8 High Resolution Piezo Actuator Sensing

The digital front-end gives access to internal registers (addresses 0×06 to $0 \times 1F$) to configure the output channels to sense signals that can trigger detection events and haptic waveform playback.

As an example, the input signal of a piezo actuator connected to OUT0 (F1) which has been pressed could trigger an automatic waveform feedback on the channel using one of the waveform generation mode (section 6.2.3) to mimic the feel of a mechanical button. See section 6.8 for more detail on the sensing configuration.

The sensing resolution of the BOS0614 is 220 μV which enables the design of very sensitive touch interface.

6.2.9 Zero Power Sensing

Channels with the Piezo Sensing feature enabled (see section 6.8) can wake the BOS0614 from SLEEP (if bit DS is set to 0x1). This feature allows the BOS0614 to be in SLEEP mode while still benefiting from

sensing capability. The Zero Power Sensing (ZPS can be configured with low or high sensitivity using the bit <u>ZPS_SENS</u>. The following conditions apply:

- The sensing must be enabled on desired channels using <u>SENSECONFIG [3:0]</u> bits (see section 6.8).
- If bit <u>ZPS</u> is set to 0x0, the BOS0614 wakes-up from SLEEP when the actuator is pressed and the configured sensing conditions on the channel is also successful. If the sensing condition on the channel is not met within 100 ms, the BOS0614 will go back into SLEEP mode.
- If bit <u>ZPS</u> is set to 0x1, the BOS0614 wakes-up from SLEEP when the actuator is pressed without trigger conditions. This configuration is not recommended as it may cause the device to behave unpredictably when it wakes-up from SLEEP using a valid communication on its I²C/I3C interface.
- When BOS0614 wakes-up from SLEEP with a ZPS event and the actuator is pressed and then released (met the configured release conditions), the MCU must initiate a valid communication on the I²C/I3C interface within 100 ms, or the BOS0614 will return into SLEEP mode.

See section 7.3.3 for more detail on start-up sequence.

6.2.10 Input Trigger

Each GPIO pin can be used as a trigger input to initiate a predefined haptic waveform, by setting the <u>EXT_TRIG</u> bit to 0x1. This is useful for enabling low-latency communication between a sensor and the BOS0614 by bypassing the MCU. The waveform trigger is based on the GPIO pin state rather than a edge trigger. Note that any input trigger will be ignored while the device is in SLEEP mode.

The followings registers need to be set to configure the haptic waveform triggering using the GPIO:

- <u>TC.POL</u> sets the GPIO input signal polarity required to initiate a predefine haptic waveform.
- SENSEX.WVP [2:0] and SENSEX.WVR [2:0] (registers <u>0x07</u>, <u>0x0B</u>, <u>0x0F</u> and <u>0x13</u>) define the waveform to play (see Table 16) depending on the GPIOx pin input state and bit <u>TC.POL</u> (as detailed in Table 8 and Table 9).
- AUTOP and AUTOR of any of the sensing channel (registers <u>0x07</u>, <u>0x0B</u>, <u>0x0F</u> and <u>0x13</u>), enables the automatic haptic waveform start.
- <u>GPIO.GPIOx</u> must be set to 0x7.
- <u>SENSECONFIG.EXT_TRIG</u> must be set to 0x1.

SEQUENCE #	GPIOx PIN	STATE OF ASSOCIATED		PLAY WVP [2:0]	PLAY WVR [2:0]
	INPUT STATE	PRESS_RELEAS	<u>E [3:0]</u> BIT	WAVEFORM?	WAVEFORM?
1	0	0x0	Released	No	No
2	1	Switch to 0x1	Pressed	Yes	No
3	0	0x1	Pressed	No	No
4	1	Switch to 0x0	Released	No	Yes
5	0	0x0	Released	No	No

Table 8: WVP [2:0] and WVR [2:0] GPIO Trigger Conditions by GPIO for TC.POL = 0x1

SEQUENCE #	GPIOx PIN	STATE OF ASSO	DCIATED	PLAY WVP [2:0]	PLAY WVR [2:0]
	INPUT STATE	PRESS_RELEAS	<u>E [3:0]</u> BIT	WAVEFORM?	WAVEFORM?
1	1	0x0	Released	No	No
2	0	Switch to 0x1	Pressed	Yes	No
3	1	0x1	Pressed	No	No
4	0	Switch to 0x0	Released	No	Yes
5	1	0x0	Released	No	No

Table 9: WVP [2:0] and WVR [2:0] GPIO Trigger Conditions by GPIO for TC.POL = 0x0

6.2.11 Low-Latency Piezo Button Interface

With the GPIOs configured as open-drain (i.e., bit <u>OD</u> set to 0x1), piezo actuators connected to the BOS0614 channels can replace mechanical buttons. The GPIOx output will be set to high state when the piezo actuator is not pressed (associated <u>PRESS_RELEASE [3:0]</u> bit is set to 0x0) and low state when the piezo actuator is pressed (associated <u>PRESS_RELEASE [3:0]</u> bit is set to 0x1).

Thanks to the combination of the native 10 kSps sample rate per channel and its advanced built-in detection algorithm, the BOS0614 can notify the MCU of a press or release event within 100 μ s.

6.2.12 Adjustable Current Limit

The maximum current of the power converter must be limited to avoid damage to the inductor by selecting the proper R_{sense} value for the selected inductor (see section 7.4.4). Current flowing in the inductor is sensed by measuring the voltage drop across the series resistor R_{sense} placed between pins RP and RM.

6.2.13 Energy Recovery

The BOS0614 architecture enables the recovery of the energy accumulated on the capacitive load (piezo) and transfers it back to its input (VDD), which makes the BOS0614 power efficient. The internal controller determines the direction of the power flow during waveform playback. This imposes requirements on the selection of C_{VDD} input capacitor (see section 7.4.5). It may also require the use of the Unidirectional Power Input (i.e., bit <u>UPI</u> set to 0x1, see section 6.2.14) features depending on the characteristic of the power delivery network connected to the BOS0614.

6.2.14 Unidirectional Power Input

The BOS0614 can sink and source current from the power delivery network (PDN) during normal operation due to its energy recovery feature (see section 6.2.13 for more detail). Configuring the Unidirectional Power Input (bit UPI set to 0x1), which enables the BOS0614 to appear as a resistive load to the power supply (BOS0614 only sinks current), see Figure 15. This is useful when the power delivery network can't sink current or to reduce RMS current flowing in the PDN. This feature causes the following to happen:

- First, power is drawn from the input source (VBUS) when the amplitude of the output waveform increases.
- Second, energy recovered accumulates on the input capacitor (C_{VDD}) increasing its voltage when the amplitude of the output waveform decreases.

Figure 15: Block diagram of the Unidirectional Power Input (UPI)

As shown on Figure 16, energy accumulation on the input capacitor causes the input voltage (VDD) to increase See section 7.4.5 for details on selecting the input capacitor. The voltage on the input capacitor shall never exceed the VDD maximum operating voltage of 5.5 V.

Figure 16: VDD voltage increase during energy recovery when bit UPI is set to 0x1. C_{VDD} = 100 μ F, C_L = 400 nF

6.2.15 Fault Behaviour

This section lists the faults and their behaviours.

6.2.15.1 Overvoltage

If an overvoltage condition at one of the output pins OUT0 (F1), OUT1 (E2), OUT2 (E4) or OUT3 (F5) is detected during waveform generation (i.e., voltage higher than approximately 65 V), the following occurs:

- Bit <u>OVV</u> is set
- Bits <u>STATE [1:0]</u> is changed to 0x3 (ERROR state)
- OUT0 (F1), OUT1 (E2), OUT2 (E4) and OUT3 (F5) voltage ramp down to VDD

The bit <u>OVV</u> will clear automatically and the BOS0614 state will change for IDLE mode (bits <u>STATE [1:0]</u> set to 0x0) with the following conditions:

- Bit <u>OE</u> is 0x0
- Voltage on OUT0 (F1), OUT1 (E2), OUT2 (E4) and OUT3 (F5) is lower than the maximum allowed V_{OUT(FS)}

6.2.15.2 Output Short Circuit

The BOS0614 has an output short circuit protection to prevent excessive current to flow because of a shorted load. In case the short circuit condition is detected, the following occurs:

- Bit <u>SC</u> is set
- Bits <u>STATE [1:0]</u> is changed to 0x3 (ERROR state)
- OUT0 (F1), OUT1 (E2), OUT2 (E4) and OUT3 (F5) voltage ramp down to VDD

The bit <u>SC</u> will clear automatically and the BOS0614 state will change for IDLE mode (bits <u>STATE [1:0]</u> is 0x0) with the following conditions:

- Bit <u>OE</u> is 0x0
- Voltage on OUT0 (F1), OUT1 (E2), OUT2 (E4) and OUT3 (F5) is lower than the maximum allowed V_{OUT(FS)}

6.2.15.3 Over Temperature

The BOS0614 has an internal temperature sensor that puts the BOS0614 in ERROR state in case the die junction temperature exceeds 145 °C. In this case, the following occurs:

- Bit <u>OVT</u> is set
- Bits <u>STATE [1:0]</u> is changed to 0x3 (ERROR state)
- OUT0 (F1), OUT1 (E2), OUT2 (E4) and OUT3 (F5) voltage ramp down to VDD

Bit <u>OVT</u> will clear automatically and the BOS0614 state will change for IDLE mode (bits <u>STATE [1:0]</u> is 0x0) with the following conditions:

- Bit <u>OE</u> is 0x0
- Voltage on OUT0 (F1), OUT1 (E2), OUT2 (E4) and OUT3 (F5) is lower than the maximum allowed V_{OUT(FS)}

The low power dissipation of the BOS0614 makes it unlikely that its temperature will reach 145 °C even when it is continuously operated at the maximum C_L in the operating temperature range T_A .

6.2.15.4 Brownout

The BOS0614 has internal brownout protections and if V_{REG} goes below 1 V, the following occurs:

• The chip issues a reset signal, and all registers are set to their default values

When V_{REG} goes back to its specified operating voltage, the BOS0614 state goes into IDLE mode (bits <u>STATE [1:0]</u> is 0x0).

6.2.15.5 Under Voltage

The V_{BUS} is monitored, and its voltage is below 2.875 V during waveform generation the following occurs:

- Bit <u>UVLO</u> is set
- Bits <u>STATE [1:0]</u> is changed to 0x3 (ERROR state)
- OUT0 (F1), OUT1 (E2), OUT2 (E4) and OUT3 (F5) voltage ramp down to VDD

Bit <u>UVLO</u> will clear automatically and the BOS0614 state will change for IDLE mode (bits <u>STATE [1:0]</u> is 0x0) with the following conditions:

- Bit <u>OE</u> is 0x0
- Voltage on OUT0 (F1), OUT1 (E2), OUT2 (E4) and OUT3 (F5) is lower than the maximum allowed V_{OUT(FS)}

6.2.15.6 Current Detection Status

For proper operation, the BOS0614 monitors the current using RP (B1) and RM (A1) pins and R_{SENSE} resistor. If no current is detected during waveform generation, the following occurs:

- Bit <u>IDAC</u> is set
- Bits <u>STATE [1:0]</u> is changed to 0x3 (ERROR state)

Typically, <u>IDAC</u> is set when R_{SENSE} or L_1 is disconnected. Bit <u>IDAC</u> will reset when current is detected. The BOS0614 will recover from ERROR state and change for IDLE mode (bits <u>STATE [1:0]</u> is 0x0) with the following conditions:

- Bit <u>OE</u> is 0x0
- Voltage on OUT0 (F1), OUT1 (E2), OUT2 (E4) and OUT3 (F5) is lower than the maximum allowed V_{OUT(FS)}

6.2.16 Output Timeout

Setting bit <u>TOUT</u> to 0x1 enables a timeout mechanism that forces the BOS0614 into SLEEP mode if no new communication has been received within 4 ms while playing a waveform in Direct Mode (bits <u>RAM [1:0]</u> set to 0x0) or FIFO Mode (bit <u>RAM [1:0]</u> set to 0x1). More specifically, the BOS0614 enter into SLEEP mode when the following conditions are met:

- Bit <u>TOUT</u> is set to 0x1.
- Bit <u>OE</u> is set to 0x1.
- Bits <u>RAM [1:0]</u> are set to 0x0 or 0x1.
- The FIFO is empty when using FIFO mode (bits <u>RAM [1:0]</u> set to 0x1).
- BOS0614 did not receive any communication on its digital interface for more than 4 ms.

6.3 Digital Interface

A MIPI I3C slave port enables communication with the BOS0614. I3C is backward compatible with legacy I²C devices, but I3C bus supports significantly higher speed. It is used to write data to the registers, whose content can also be read back.

6.3.1 General Communication Protocol

The host MCU transfers data using I3C or I²C standards. Both protocols can do write transactions with the following steps:

- The start bit (0), followed by the 7-bit I²C address of the BOS0614 (0x2C), followed by the R/\overline{W} bit (0).
- An 8-bit word is sent containing the register address corresponding to the register to write to.
- The register address is followed by two bytes of data to be written. The first byte sent corresponds to the MSBs of the register data and the second byte corresponds to the LSBs of register data. Three cases exist where more than one register can be written:
 - Register address = 0x00: All subsequent 2-byte words will automatically be written to the <u>REFERENCE</u> register. The communication frame must be stopped to access other registers.
 - 2. Register address other than 0x00 and <u>STR</u> = 1: The register address will be automatically incremented every two bytes to allow writing multiple registers in the same transmission

frame and reduce the number of bits used in the communication. The communication frame must be stopped to skip register addresses.

3. Register address other than 0x00 and bit <u>STR</u> set to 0x0: After every two bytes of data, a byte of address corresponding to the next target register must be sent.

Both protocols can also do read transactions with the following steps:

- The start bit (0), followed by the 7-bit I²C address of the BOS0614 (0x2C), followed by the R/\overline{W} bit (0).
- Each read request will return two bytes of data corresponding to the register set in <u>BC [7:0]</u>.

6.3.2 I3C

BOS0614

Product Datasheet

The I3C slave functionality implemented in the BOS0614 is based on MIPI[®] Alliance Specification for I3CSM, version 1.0. I3C is a 2-wire bidirectional serial bus which always has one master and one or more slaves. The two wires are designated SDA and SCL: SDA is a bidirectional data signal, SCL is a clock signal. They connect respectively to BOS0614 SDA and SCL pins.

Table 10: Serial interface pin description

PIN NAME	PIN DESCRIPTION
SDA	Bidirectional Data Signal
SCL	Master Clock Signal

I3C communication is initiated by the master which generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions. All I3C communication occurs within a frame. The basic frame begins with a START, followed by the header, the data, and a STOP, see Figure 17. The header following a START allows for bus arbitration. The master uses the header to address slave device(s). Each slave is addressed by a unique 7-bit slave address plus a read-write bit.

Figure 17: Typical I3C Write communication frame

I3C bus uses transitions on SDA while the clock is at logic high to indicate START and STOP conditions. A high-to-low transition on the SDA signal indicates a START, and a low-to-high transition indicates a STOP. All devices share the same SDA signals through a bidirectional bus using a wired-AND connection. Data transition on SDA must occur during the low time of the clock period.

The BOS0614 I3C slave has a legacy I²C static address (7'h2C) implemented. The BOS0614 will act as an I²C slave using address 7'h2C until it is assigned a dynamic address. Once a dynamic address has been assigned, the BOS0614 will only operate as an I3C Slave unless it is reset.

A 50 ns spike filter is included in the BOS0614. By default, the spike filter is active at power up. To operate in I3C, the broadcast address 0x7E need to be written at I²C speed. The filter will automatically be deactivated, and the I3C communication speed can be used.

BOS0614 I3C interface is compliant with MIPI[®] Alliance Specification for I3CSM, version 1.0. It features the following:

- 1. Slave only
- 2. SDR (Single Data RATE) up to 12.5 MHz
- 3. I²C compatibility with static address: 7'h2C
- 4. Supports basic Common Command Codes (CCC) (see Table 11 for detail)
- 5. Does not support Hot Join (HJM)
- 6. Does not support In-Band Interrupt (IBI)
- 7. Provisional ID = 0x08a206840000
 - a. Manufacturer ID = 0x0451
 - b. Part ID = 0x0684
 - c. Instance ID = 0
 - d. Vendor ID = 0
- 8. Bus Characteristic Register = 0x00
- 9. Device Characteristic Register = 0x25

Table 11: Common Comma	d Codes (CCC) support
------------------------	-----------------------

COMMAND NAME	ТҮРЕ	CODE	DESCRIPTION
ENEC	Broadcast	0x00	Enable events command
DISEC	Broadcast	0x01	Disable events command
ENTAS0	Broadcast	0x02	Enter activity state 0
ENTAS1	Broadcast	0x03	Enter activity state 1
ENTAS2	Broadcast	0x04	Enter activity state 2
ENTAS3	Broadcast	0x05	Enter activity state 3
RSTDAA	Broadcast	0x06	Reset dynamic address assignment
ENTDAA	Broadcast	0x07	Enter dynamic address assignment
ENEC	Direct	0x80	Enable events command
DISEC	Direct	0x81	Disable events command
ENTAS0	Direct	0x82	Enter activity state 0
ENTAS1	Direct	0x83	Enter activity state 1
ENTAS2	Direct	0x84	Enter activity state 2
ENTAS3	Direct	0x85	Enter activity state 3
RSTDAA	Direct	0x86	Reset dynamic address assignment
SETNEWDA	Direct	0x88	Set new dynamic address
GETPID	Direct	0x8D	Get provisional ID
GETBCR	Direct	0x8E	Get bus characteristics register
GETDCR	Direct	0x8F	Get device characteristics register
GETSTATUS	Direct	0x90	Get device status
GETHDRCAP	Direct	0x95	Get HDR Capability

The BOS0614 will operate as an I3C Slave only after it is assigned a dynamic address by the master. Address assignment (command ENTDAA) must be performed with I²C timing or a dummy write to

address 0x7E must be performed prior to ENTDAA to clear the 50 ns spike filter and enable communication at I3C speed.

A typical write sequence from power up is the following:

- 1. Send start condition with broadcast address 0x7E at I²C speed to clear I²C spike filter
- 2. ENTDAA
- 3. Wake-up the chip with a dummy write
- 4. Configure registers as needed

6.3.3 I²C

The BOS0614 acts by default as an I²C slave using its static address (7'h2C). Figure 18 shows a basic datatransfer sequence with I²C static addressing. Following a START, the master device generates the 7-bit slave address and the read-write (R/W) bit to communicate with a slave device. The slave device then holds the SDA signal low during the next clock period to indicate acknowledgment to the master. When this acknowledgment occurs, the master transmits the next byte(s) of the sequence.

Figure 18: Basic data transfer write sequence with I²C static addressing

Figure 19 lists the possible communication sequences in I²C mode. MSB is always sent first.

A typical write sequence from power up is the following:

- 1. Write with static address 0x2C with dummy data to wake-up the BOS0614
- 2. Configure registers as needed

A 50 ns spike filter is included in the BOS0614. By default, the spike filter is active at power up.

Product Datasheet

	Data	write										
master	s	0101100	0		8-bit register address		8-bit data (msb)]	8-bit data (lsb)		Ρ
slave				А		A		A			А	
	Data	read										
master	S	0101100	1			A			NA P			
slave				A	8-bit data (msb)		8-bit data (lsb)					
	S: sta Sr: re	rt peated start	A: a NA	ackı : nc	nowledge P: stop it acknowledge							

Figure 19: All possible data-transfer sequences with I²C static addressing

6.4 Direct Mode

In Direct mode (bits RAM [1:0] set to 0x0), the haptic waveform samples are played as they are sent from the host MCU to the **REFERENCE** register. The rate at which the data is read to generate the haptic waveform is set by bits PLAY [2:0]. Data management and synchronization can be facilitated by setting bits GPIO3-0 [3:0] to 0x6 to allow the corresponding GPIO to generate an interruption that notifies the MCU when the BOS0614 is ready to receive the next sample. Interpolation between user samples is done to generate the output waveform.

When bits RAM [1:0] is set to 0x0 to use Direct mode, the RAM is not used and its content previously written using RAM Playback mode (section 6.6) or RAM Synthesis mode (section 6.7) is preserved.

Bit <u>PC</u> must be set to 0x0 when using Direct mode.

6.4.1 Typical Operation Sequence

The following sequence use Direct mode to play haptic waveforms:

- 1. Set bits CONFIG.RAM [1:0] to 0x0 to select Direct mode.
- 2. Set bit TC.PC to 0x0
- 3. Set bits <u>GPIOx [3:0]</u> to 0x6
- 4. Set bit CONFIG.OE to 0x1
- 5. Write a waveform sample to the <u>REFERENCE</u> register.
- 6. On a GPIOx pin falling edge, go to step 5. to send the next waveform sample to the device.

6.5 FIFO Mode

In FIFO mode (bits RAM [1:0] set to 0x1), the waveform playback is set in a 1024-sample FIFO. The FIFO entries are appended every time waveform data is written in the **REFERENCE** register. Digital samples are represented as 12-bit unsigned values. If bit OE is set to 0x1, the FIFO entries are read automatically out of the FIFO at a rate set by bits PLAY [2:0]. For waveform playback streaming, the FIFO data write rate must match the readout rate of the waveform playback (set by bits PLAY [2:0]) to always keep valid data inside the FIFO. If the FIFO becomes empty, bit EMPTY is set and the FIFO maintains the last valid data, keeping the waveform in a steady state.

Burst data transfers can be used to minimize the communication interface usage. Packets of 16-bit words can be sent in the same I²C payload to be written in the FIFO. Bit <u>FULL</u> is set when the FIFO becomes full and cannot accept more data. Bits <u>FIFO SPACE [9:0]</u> can be read prior to verify space available before sending new data.

Waveforms should begin and end with 0 V amplitude. In case bit <u>OE</u> is set to 0x0 or bit <u>RST</u> is set to 0x1 during waveform playback, the output will be ramped down automatically to 0 V.

The FIFO mode uses the RAM space to implement the FIFO. Using the FIFO mode overwrites any waveform previously programmed using RAM Playback and RAM Synthesis modes. They must be reprogrammed before they can be used again.

Bit <u>PC</u> must be set to 0x0 when using FIFO mode.

6.5.1 Typical Operation Sequence

The following sequence use FIFO mode to play haptic waveforms:

- 1. Set bits <u>CONFIG.RAM [1:0]</u> to 0x1 to select FIFO mode.
- 2. Set bit TC.PC to 0x0
- 3. Set bit <u>CONFIG.OE</u> to 0x1 to enable the output.
- 4. Read bits <u>FIFO_STATE.FIFO_SPACE</u> to determine space available in FIFO for new data.
- 5. Write as much 12-bit waveform data as possible according to space available in FIFO into the <u>REFERENCE</u> register.
- 6. Repeat steps 3 and 4 until the desired waveform is completed.

In the above example, the output is enabled, and the FIFO is filled afterwards. It is also possible to preload the waveform in the FIFO before enabling the output, and then add samples to the FIFO as needed.

6.6 RAM Playback Mode

In RAM Playback mode (bits <u>RAM [1:0]</u> set to 0x2), a point-by-point waveform is defined by storing all the amplitude samples in chronological order in the RAM using <u>BURST RAM WRITE</u> command. The waveform is played when the output is enabled (bit <u>OE</u> is set to 0x1).

6.6.1 RAM Programming

The samples are written to the RAM using <u>BURST RAM WRITE</u> command. More than one waveform can be stored in the RAM. The 2 kB RAM can store up to 1024 words of 16-bit. Each word is defined by 16-bit data in the same format as the <u>REFERENCE</u> register in Direct and FIFO modes: the enabled channels are defined with bits [15:12] and the waveform amplitude by bits [11:0]. Start and end addresses are defined using the <u>RAM PLAYBACK</u> command and indicate the samples to be fetched when the playback is initiated.

When playback starts, the data is read out sequentially at the sample rate set by bits PLAY [2:0].

Once the waveform has been played, it must be rearmed to be played again by writing the RAM start and end addresses again using the <u>RAM PLAYBACK</u> command. The waveform will immediately start if these addresses are set while bit <u>OE</u> is 0x1.

No waveform should be playing while programming RAM to avoid unexpected behaviour.

6.6.2 Typical Operation Sequence

The following sequence shows how to use RAM Playback mode to play haptic waveforms:

- 1. Set bits <u>CONFIG.RAM [1:0]</u> to 0x2 to select RAM playback mode.
- 2. Write waveform data to the RAM using <u>BURST RAM WRITE</u> command. See section 6.6.3 for a detailed example.
- 3. Write the start and end addresses using <u>RAM PLAYBACK</u> command.
- 4. There are multiple ways to start playback:
 - a. *Immediate start:* If <u>CONFIG.OE</u> is set to 0x1, the waveform will start to play immediately after the start and end addresses are programmed using <u>RAM PLAYBACK</u> command. No other action or event is required. Care must be taken to ensure any previous waveform finished playing before the memory is reprogrammed.
 - b. *Intentional start:* If <u>CONFIG.OE</u> is set to 0x0, setting <u>CONFIG.OE</u> to 0x1 will start playback.
 - c. Sensing detection: With bit AUTOP and AUTOR of any of the sensing channel (registers 0x07, 0x0B, 0x0F and 0x13), playback will start automatically when the detection conditions are met.
 - d. *Triggered start:* Playback is started upon a GPIO trigger. This feature can be enabled on every GPIO by setting <u>SENSECONFIG.EXT_TRIG</u> bit to 0x1 and setting the desired channel GPIO to 0x7 in the <u>GPIO</u> register.

6.6.3 RAM Playback Example

In RAM Playback, waveform samples need to be first stored in the RAM to be fetched later. A typical RAM programming sequence is presented in Figure 20 which consist of programming a waveform using 10 samples to be played on channels 0 and 1. The bit <u>OE</u> is set to 0x1 to start playing immediately after the start and end addresses are programmed.

Transaction	1			
Code	Description / Configure RAM Playback Mode	1		
0x2C	I ² C address	1		
0x05	Select CONFIG register	-		
0x2497	Set RAM Playback mode			
Transaction	2]		
Code	Description / Configure Burst RAM Write	1		
0x2C	I ² C address			
0x00	Select REFERENCE register to use WFS commands	-		
0x0014	WFS command : BURST RAM WRITE	-		M Constant
0x0000	Set RAM START ADDRESS		RA	M Content
0.0000	Set DATA COUNT (10 samples to be written starting at	Address	Channels	Samples
0X000A	RAM address 0x0000)	→ 0x0000	0x3	0x000
0x3000	Sample data, enable channels 0 and 1	0x0001	0x3	0x800
0x3800	Sample data, enable channels 0 and 1	0x0002	0x3	0x80C
0x380C	Sample data, enable channels 0 and 1	- 0x0003	0x3	0x819
0x3819	Sample data, enable channels 0 and 1	0x0004	0x3	0x823
0x3825	Sample data, enable channels 0 and 1	0x0006	0x3	0x83E
0x3832	Sample data, enable channels 0 and 1	0x0007	0x3	0x84B
0x383E	Sample data, enable channels 0 and 1	- 0x0008	0x3	0x857
0v384B	Sample data, enable channels 0 and 1	0x0009	0x3	0x864
0x3040	Sample data, enable channels 0 and 1	_		
0,0007	Sample data, enable channels 0 and 1	_		
0X3004	Sample data, enable channels 0 and 1	WFS	WES R	enister Conte
Transaction	3	Register Address	I	egister conte
Code	Description / Set RAM Playback Start and End Addresses	→ 0x0013	0x00	0x000
0x2C	I ² C address		0x00	0x009
0x00	Select REFERENCE register to use WFS commands			
0x0013	WFS command : RAM PLAYBACK	1	I	
0x0000	Set RAM START ADDRESS	-		
0x0009		1		

Figure 20: RAM Playback Setup Example

6.7 RAM Synthesis Mode

In RAM Synthesis mode (bits <u>RAM [1:0]</u> set to 0x3), sine wave parameters used to generate simple to complex waveforms are stored in RAM using:

- 1) SLICEs, written in the RAM using the <u>RAM ACCESS</u> command. Each SLICE contains a group of parameters used to produce a sine wave of defined amplitude, frequency, and number of cycles. It may also be ramped up and down (as shown in Figure 24). See section 6.7.1.1 for more details.
- 2) WAVEs, written in the RAM using the <u>RAM ACCESS</u> command. A WAVE defines a series of SLICEs to be played successively. All SLICEs of a WAVE must be written in order and contiguously in the RAM. See section 6.7.1.2 for more details.
- SEQUENCER, configured using the <u>SEQUENCER</u> command. The SEQUENCER is used to store up to 15 WAVE addresses in RAM (called WAVEFORM_IDs). The WAVES may all be played sequentially, or in any contiguous subsets, down to a single WAVEFORM_ID. See section 6.7.1.3 for more details.

The <u>RAM SYNTHESIS</u> command defines the start and end WAVEFORM_IDs from the WAVEFORM_IDs list stored in the <u>SEQUENCER</u> command.

Once the waveform has been played, it can be played again by setting the start and end WAVEFORM_IDs again in the <u>RAM SYNTHESIS</u> command. The waveform will immediately start playing if the WAVEFORM_IDs in the <u>RAM SYNTHESIS</u> command are set while <u>OE</u> is set to 0x1.

No waveform should be playing while programming RAM to avoid unexpected behaviour.

6.7.1 RAM Programming

The WAVE and SLICE data are stored in RAM, as shown in Figure 21. WAVE and SLICE blocks can be arranged in any order in RAM but must not overlap.

Figure 21: Example of N WAVE blocks followed with SLICEs organized in RAM.

6.7.1.1 SLICE Blocks

SLICE blocks in the RAM contains the parameters used to synthesize sine waveforms. Each SLICE block contains three words grouping nine parameters as described in Figure 22 and Table 12. Figure 23 shows an example on how several SLICEs can be organized in RAM. Figure 24 illustrates an example of how these parameters shape a SLICE waveform. Many SLICES may be successively played to form more complex waveforms.

Bit 15			Bit 12	Bit 11 Bit 8	Bit 7	Bit 4	Bit 3	Bit 0	_
СНЗ СН2 СН1 СН0					AMPLITUDE				
CYCLES				ELES		FREQUENCY			SLICE Block
NOT USED		SHAPEUP SHAPEDN							

Figure 23: Example of M SLICE Blocks organized in RAM

Confidential

Figure 24: Sine wave SLICE parameters illustration

Table 12: Sine wave SLICE Parameters

WORD	NAME	DESCRIPTION
1[15]	СНЗ	Indicates which channel outputs the waveform is played on.
1[14]	CH2	1: Data will be played on the channel
1[13]	CH1	0: Channel is inactive
1[12]		
1[11:0]	AMPLITUDE	Voltage = Full-scale output voltage × AMPLITUDE /4095
		This AMPLITUDE value calculation is valid only for RAM Synthesis mode (hits
		RAM [1:0] set to 0x3).
2[15:8]	CYCLES	CYCLES refers to the number of times a full sine wave period will be repeated,
		excluding SHAPEUP/SHAPEDN ramp times. CYCLES value must be greater
		than 0.
2[7:0]	FREQUENCY	The waveform synthesizer has a frequency resolution of 3.9 Hz. FREQUENCY
		value must be greater than 0.
		The synthesized sine wave frequency will be.
		Synthesized sine wave frequency $(Hz) = 3.9 \times FREQUENCY$
3[7:4]	SHAPEUP	SHAPEUP sets the ramp-up time of the waveform from 0 V to AMPLITUDE.
3[3:0]	SHAPEDN	SHAPEDN sets the ramp-down time of the waveform from AMPLITUDE to 0 V.
		SHAPEUP and SHAPEDN values (in ms) must be greater than the length of a
		cycle (in ms). The ramp-up of ramp-down duration is added to the total SLICE
		SLICE waveform duration (ms) = $SHAPEUP + \frac{CYCLES}{3.9 \times FREQUENCY} + SHAPEDN$
		0x0: No shape
		0x1: 32 ms
		0x2: 64 ms
		0x3: 96 ms
		0x4: 128 ms
		0x5: 160 ms
		0x6: 192 ms
		0x7: 224 ms
		0x8: 256 ms
		0x9: 512 ms
		0xA: 768 ms
		0xB: 1024 ms
		0xC: 1280 ms
		0xD: 1536 ms
		0xE: 1792 ms
		0xF: 2048 ms

6.7.1.2 WAVE Blocks

As shown in Figure 25 and Figure 26, each WAVE block in RAM contains three words:

- 1. The SLICE START ADDRESS, which is the RAM address of the first SLICE block first word.
- 2. The SLICE END ADDRESS, which is the RAM address of the last SLICE block third word.
- 3. The WAVE CYCLE COUNT is the number of times the WAVE block is repeated.

SLICEs to be played sequentially must be placed in order and contiguously in the RAM.

Figure 25: WAVE Block

Figure 26: Example of N WAVE Blocks in RAM organized in RAM

6.7.1.3 SEQUENCER

The SEQUENCER stores up to 15 WAVEFORM_IDs to be played sequentially, named WAVEFORM_ID 0 to 14 using the <u>SEQUENCER</u> command. Each WAVEFORM_ID contains the address in memory of a WAVE block to play.

To program the WAVEFORM_IDs, first write the SEQUENCER address <u>0x0002</u>. Then write all 15 WAVEFORM_IDs sequentially. Unused WAVEFORM_IDs may be written with any address. All 15 WAVEFORM_ID values must be written.

Various sets of waveform sequences can be played. The start and end WAVEFORM_IDs to play among the 15 WAVEFORM_IDs are defined in the <u>RAM SYNTHESIS</u> command. The largest sequence to be played will cover the 15 WAVEs, from WAVEFORM_ID 0 to 14. The smallest sequence is when the start address is equal to the end address and thus only one WAVEFORM_ID is played. Figure 27 shows an example where the waveform starts at SEQUENCER WAVEFORM_ID 3 and ends after playing SEQUENCER WAVEFORM_ID 6.

	Bit 15 Bit 10	Bit 9 Bit 0	
SEQUENCER WAVEFORM_ID 0	NOT USED [15:10]	WAVE ADDRESS [9:0]	
SEQUENCER WAVEFORM_ID 1	NOT USED [15:10]	WAVE ADDRESS [9:0]	
SEQUENCER WAVEFORM_ID 2	NOT USED [15:10]	WAVE ADDRESS [9:0]	
SEQUENCER WAVEFORM_ID 3	NOT USED [15:10]	WAVE ADDRESS [9:0]	START
SEQUENCER WAVEFORM_ID 4	NOT USED [15:10]	WAVE ADDRESS [9:0]	
SEQUENCER WAVEFORM_ID 5	NOT USED [15:10]	WAVE ADDRESS [9:0]	
SEQUENCER WAVEFORM_ID 6	NOT USED [15:10]	WAVE ADDRESS [9:0]	END
SEQUENCER WAVEFORM_ID 7	NOT USED [15:10]	WAVE ADDRESS [9:0]	
SEQUENCER WAVEFORM_ID 8	NOT USED [15:10]	WAVE ADDRESS [9:0]	
SEQUENCER WAVEFORM_ID 9	NOT USED [15:10]	WAVE ADDRESS [9:0]	
SEQUENCER WAVEFORM_ID 10	NOT USED [15:10]	WAVE ADDRESS [9:0]	
SEQUENCER WAVEFORM_ID 11	NOT USED [15:10]	WAVE ADDRESS [9:0]	
SEQUENCER WAVEFORM_ID 12	NOT USED [15:10]	WAVE ADDRESS [9:0]	
SEQUENCER WAVEFORM_ID 13	NOT USED [15:10]	WAVE ADDRESS [9:0]	
SEQUENCER WAVEFORM_ID 14	NOT USED [15:10]	WAVE ADDRESS [9:0]	

Figure 27: Sequencer example where waveform start at WAVEFORM_ID 3 and ends at 6.

6.7.2 Typical Operation Sequence

The following sequence use RAM Synthesis mode to play haptic waveforms:

- 1. Set bits <u>CONFIG.RAM [1:0]</u> to 0x3 to select RAM Synthesis mode.
- 2. Write 0x00 to use WFS commands.
- 3. Use <u>RAM ACCESS</u> command to write the WAVE blocks and SLICE blocks in RAM. Multiple write sequences might be needed to program the waveform addresses and slices, see section 6.7.3 for some examples.
- 4. Write the WAVEFORM_IDs using the <u>SEQUENCER</u> command, which correspond to the desired WAVE block RAM addresses.
- 5. Write start and end WAVEFORM_IDs that will be played using <u>RAM SYNTHESIS</u> command.
- 6. There are multiple ways to start playback:
 - e. *Immediate start:* If <u>CONFIG.OE</u> is set to 0x1, the waveform will start to play immediately after the start and end addresses are programmed using the <u>RAM SYNTHESIS</u> command. No other action or event is required.
 - f. Intentional start: If <u>CONFIG.OE</u> = 0, setting <u>CONFIG.OE</u> to 1 will start playback.
 - g. Sensing detection: With bit AUTOP and AUTOR of any of the sensing channel (registers 0x07, 0x0B, 0x0F and 0x13), playback will start automatically when the detection conditions are met.
 - h. *Triggered start:* Playback is started upon a GPIO trigger. This feature can be enabled on every GPIO by setting <u>SENSECONFIG.EXT_TRIG</u> bit to 0x1 and setting the desired channel GPIO to 0x7 in the <u>GPIO</u> register.

6.7.3 RAM Synthesis Mode Examples

Figure 28 to Figure 32 gives two examples showing how to program in RAM a waveform to play on channel 0:

- Example 1 uses only 1 SLICE and 1 WAVE programmed with a single communication transaction.
- Example 2 uses 4 SLICEs and 3 WAVEs programmed with a communication transaction for each WFS command.

Both examples use OE set to 0x1 to start playing immediately after the start and end WAVEFORM_IDs are programmed using <u>RAM SYNTHESIS</u> command.

ansaction	1:			
Code	Description / Configure RAM Synthesis Mode			
0x2C	I ² C address			
0x05	Select CONFIG register	7		
0x2697	Set RAM Synthesis Mode			
Code	Description / Program one WAVE in PAM		RAN	1 Content
	WES command : RAM ACCESS	Address	WAVE	
0×00001	Set DAM start address for WAVE block programming	→ 0x0000	0x00	0x100
0x0100	WAVE Data : Sat DAM start address of first SLICE	- 0x0001	0x00	0x102
0x0100	WAVE Data : Set RAW start address of last SLICE	0x0002		0x0001
0x0102	WAVE Data : Set RAW end address of last SLICE	-		
0x0001	wave Data : Set wave cycle count (played once)			
Code	Description / Program one SLICE in RAM		RAN	1 Content
0x0001	WFS command : RAM ACCESS	Address	SLICE	
0x0100	Set RAM start address for SLICE block programming	0x0100	0x1	0xFFF
0x1FFF	SLICE Data : Set AMPLITUDE (full-scale), channel 0	0x0101	0x04	0x80
0x0480	SLICE Data : Set CYCLES (4) and FREQUENCY (500 Hz)	0x0102	0x00	0x0 0x0
0x0000	SLICE Data : Set SHAPEUP and SHAPEDN (0 ms)			
Code	Description / Drogram Sequencer Entries			
0x0002	WES command : SEQUENCER		Sequer	ncer Content
0x0000	SEQUENCER W0 WAVE block address			
0x0000	SEQUENCER W1 : Any value	SEQUENCER_W0	0x00	0x000
		SEQUENCER W2	0x00	0x000
0_0000		SEQUENCER_W3	0x00	0x000
0×0000		SEQUENCER W4	000	
0,0000	SEQUENCER W4. Any value	02002.002.0_0	0000	0x000
0,0000		SEQUENCER_W5	0x00 0x00	0x000 0x000
0x0000	SEQUENCER_W5 : Any value	SEQUENCER_W5 SEQUENCER_W6 SEQUENCER_W7	0x00 0x00 0x00	0x000 0x000 0x000 0x000
0x0000 0x0000	SEQUENCER_W5 : Any value SEQUENCER_W6 : Any value SEQUENCER_W6 : Any value	SEQUENCER_W5 SEQUENCER_W6 SEQUENCER_W7 SEQUENCER_W8	0x00 0x00 0x00 0x00 0x00	0x000 0x000 0x000 0x000 0x000
0x0000 0x0000 0x0000	SEQUENCER_W5 : Any value SEQUENCER_W6 : Any value SEQUENCER_W7 : Any value SEQUENCER_W7 : Any value	SEQUENCER_W5 SEQUENCER_W6 SEQUENCER_W7 SEQUENCER_W8 SEQUENCER_W9	0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00	0x000 0x000 0x000 0x000 0x000 0x000
0x0000 0x0000 0x0000 0x0000	SEQUENCER_W5 : Any value SEQUENCER_W6 : Any value SEQUENCER_W7 : Any value SEQUENCER_W8 : Any value SEQUENCER_W8 : Any value	SEQUENCER_W5 SEQUENCER_W6 SEQUENCER_W7 SEQUENCER_W8 SEQUENCER_W9 SEQUENCER_W10	0x00 0x00 0x00 0x00 0x00 0x00 0x00	0x000 0x000 0x000 0x000 0x000 0x000 0x000
0x0000 0x0000 0x0000 0x0000 0x0000	SEQUENCER_W5 : Any value SEQUENCER_W6 : Any value SEQUENCER_W7 : Any value SEQUENCER_W8 : Any value SEQUENCER_W9 : Any value	SEQUENCER_W5 SEQUENCER_W6 SEQUENCER_W7 SEQUENCER_W8 SEQUENCER_W9 SEQUENCER_W10 SEQUENCER_W11 SEQUENCER_W11	0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00	0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000
0x0000 0x0000 0x0000 0x0000 0x0000 0x0000	SEQUENCER_W5 : Any value SEQUENCER_W6 : Any value SEQUENCER_W7 : Any value SEQUENCER_W8 : Any value SEQUENCER_W9 : Any value SEQUENCER_W10 : Any value	SEQUENCER_W5 SEQUENCER_W6 SEQUENCER_W6 SEQUENCER_W7 SEQUENCER_W8 SEQUENCER_W10 SEQUENCER_W11 SEQUENCER_W11 SEQUENCER_W12 SEQUENCER_W13	0x00	0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000
0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000	SEQUENCER_W5 : Any value SEQUENCER_W6 : Any value SEQUENCER_W7 : Any value SEQUENCER_W8 : Any value SEQUENCER_W9 : Any value SEQUENCER_W10 : Any value SEQUENCER_W10 : Any value	SEQUENCER_W5 SEQUENCER_W6 SEQUENCER_W6 SEQUENCER_W7 SEQUENCER_W9 SEQUENCER_W10 SEQUENCER_W10 SEQUENCER_W11 SEQUENCER_W12 SEQUENCER_W13 SEQUENCER_W14	0x00	0x000 0x000
0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000	SEQUENCER_W5 : Any value SEQUENCER_W6 : Any value SEQUENCER_W7 : Any value SEQUENCER_W8 : Any value SEQUENCER_W8 : Any value SEQUENCER_W9 : Any value SEQUENCER_W10 : Any value SEQUENCER_W11 : Any value SEQUENCER_W12 : Any value	SEQUENCER_W5 SEQUENCER_W6 SEQUENCER_W7 SEQUENCER_W7 SEQUENCER_W9 SEQUENCER_W10 SEQUENCER_W10 SEQUENCER_W11 SEQUENCER_W12 SEQUENCER_W13 SEQUENCER_W14	0x00	0x000
0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000	SEQUENCER_W5 : Any value SEQUENCER_W6 : Any value SEQUENCER_W7 : Any value SEQUENCER_W8 : Any value SEQUENCER_W8 : Any value SEQUENCER_W9 : Any value SEQUENCER_W10 : Any value SEQUENCER_W10 : Any value SEQUENCER_W11 : Any value SEQUENCER_W12 : Any value SEQUENCER_W13 : Any value	SEQUENCER_W5 SEQUENCER_W6 SEQUENCER_W6 SEQUENCER_W7 SEQUENCER_W8 SEQUENCER_W9 SEQUENCER_W10 SEQUENCER_W11 SEQUENCER_W12 SEQUENCER_W13 SEQUENCER_W14	0x00	0x000
0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000	SEQUENCER_W5 : Any value SEQUENCER_W6 : Any value SEQUENCER_W7 : Any value SEQUENCER_W8 : Any value SEQUENCER_W9 : Any value SEQUENCER_W10 : Any value SEQUENCER_W10 : Any value SEQUENCER_W11 : Any value SEQUENCER_W12 : Any value SEQUENCER_W13 : Any value SEQUENCER_W13 : Any value SEQUENCER_W14 : Any value	SEQUENCER_W5 SEQUENCER_W6 SEQUENCER_W6 SEQUENCER_W7 SEQUENCER_W9 SEQUENCER_W10 SEQUENCER_W10 SEQUENCER_W11 SEQUENCER_W12 SEQUENCER_W13 SEQUENCER_W14	0x00	0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000
0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000	SEQUENCER_W5 : Any value SEQUENCER_W6 : Any value SEQUENCER_W7 : Any value SEQUENCER_W8 : Any value SEQUENCER_W8 : Any value SEQUENCER_W9 : Any value SEQUENCER_W10 : Any value SEQUENCER_W10 : Any value SEQUENCER_W11 : Any value SEQUENCER_W12 : Any value SEQUENCER_W13 : Any value SEQUENCER_W14 : Any value Description / Set Start and End Sequencer Entries	SEQUENCER_W5 SEQUENCER_W6 SEQUENCER_W7 SEQUENCER_W8 SEQUENCER_W9 SEQUENCER_W10 SEQUENCER_W10 SEQUENCER_W11 SEQUENCER_W12 SEQUENCER_W13 SEQUENCER_W14	0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00	0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000
0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000	SEQUENCER_W5 : Any value SEQUENCER_W6 : Any value SEQUENCER_W7 : Any value SEQUENCER_W8 : Any value SEQUENCER_W9 : Any value SEQUENCER_W10 : Any value SEQUENCER_W10 : Any value SEQUENCER_W11 : Any value SEQUENCER_W12 : Any value SEQUENCER_W13 : Any value SEQUENCER_W14 : Any value SEQUENCER_W14 : Any value WFS command : RAM SYNTHESIS	SEQUENCER_W5 SEQUENCER_W6 SEQUENCER_W6 SEQUENCER_W7 SEQUENCER_W9 SEQUENCER_W10 SEQUENCER_W10 SEQUENCER_W11 SEQUENCER_W12 SEQUENCER_W13 SEQUENCER_W14	0x00 0x00	0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000

Figure 28: RAM synthesis mode setup example 1

	I ² C Communication Sequence			
Transaction 1]		
Code	Description / Configure RAM Synthesis Mode			
0x2C	I ² C address	_		
0x05	Select CONFIG register	-		
0x2697	Set RAM Synthesis Mode	_		
Transaction 2]		
Code	Description / Program WAVE #1 in RAM			
0x2C	I ² C address			
0x00	Select REFERENCE register to use WFS command	-	RA	M Content
0x0001	WFS command : RAM ACCESS	RAM		
0x0000	Set RAM start address for WAVE block programming	Address	WAVE #1	
0x0100	WAVE #1 Data : Set RAM start address of SLICE #1	→ 0x0000	0x00	0x100
0x0102	WAVE #1 Data : Set RAM end address of SLICE #1	- 0x0001	0x00	0x102
0x000E	WAVE #1 Data : Set WAVE cycle count (14 times)			
Transaction 3		1	Ι	I
Code	Description / Program SLICE #1 in RAM			
0x2C	I ² C address			
0x00	Select REFERENCE register to use WFS command		RA	M Content
0x0001	WFS command : RAM ACCESS	DAM		
0x0100	Set RAM start address for SLICE block programming	Address	SLICE #1	
0x1FFF	SLICE #1 Data : Set AMPLITUDE (full scale), enable channel 0	→ 0x0100 0x0101	0x1 0x01	0xFFF 0xFF
0x01FF	SLICE #1 Data : Set CYCLES (1) and FREQUENCY (995 Hz)	0x0102	0x00	0x0 0x0
0x0000	SLICE #1 Data : Set SHAPEUP and SHAPEDN (0 ms)			
Transaction 4]		
Code	Description / Program WAVE #2 in RAM			
0x2C	I ² C address		RA	M Content
0x00	Select REFERENCE register to use WFS command	RAM		
0x0001	WFS command : RAM ACCESS	Address	WAVE #2	
0x0003	Set RAM start address for WAVE block programming	→ 0x0003	0x00	0x200
0x0200	WAVE #2 Data : Set RAM start address of SLICE #2	0x0004	0x00	0x202
0x0202	WAVE #2 Data : Set RAM end address of SLICE #2	0x0005		UXUUTD
0x001D	WAVE #2 Data : Set WAVE cycle count (29 times)]		

Figure 29: RAM synthesis mode setup example 2

	I ² C Communication Sequence					
Transaction 5]				
Code	Description / Program SLICE #2 in RAM	1				
0x2C	I ² C address	1		RAI	M Conten	t
0x00	Select REFERENCE register to use WFS command	1	PAM			
0x0001	WFS command : RAM ACCESS	-	Address	SLICE #2		
0x0200	Set RAM start address for SLICE block programming	1►	0x0200	0x1	0xCCC	
0x1CCC	SLICE #2 Data : Set AMPLITUDE (106.6V), enable channel 0		0x0201 0x0202	0x10 0x00	0: 0x2	x33 0x1
0x1033	SLICE #2 Data : Set CYCLES (16) and FREQUENCY (200 Hz)					
0x0021	SLICE #2 Data : Set SHAPEUP (64 ms) and SHAPEDN (32 ms)					
Transaction 6]				
Code	Description / Program WAVE #3 in RAM	1				
0x2C	I ² C address					
0x00	Select REFERENCE register to use WFS command			RAI	M Conten	t
0x0001	WFS command : RAM ACCESS	-		10.0		L .
0x0006	Set RAM start address for WAVE block programming	-	Address	WAVE #3		
0x0203	WAVE #3 Data : Set RAM start address of SLICE #3	1▶	0x0006	0x00	0x20	3
0x0208	WAVE #3 Data : Set RAM end address of SLICE #4		0x0007	0x00	0x20	8
0x01EE	WAVE #3 Data : Set WAVE cycle count (494 times)	-	0x0008		0x01EE	
Transaction 7	·]				
Code	Description / Program SLICE #3 in RAM					
0x2C	l ² C address	1				
0x00	Select REFERENCE register to use WFS command	-		RAI	M Conten	t
0x0001	WFS command : RAM ACCESS	-	RAM	1		
0x0203	Set RAM start address for SLICE block programming	-	Address	SLICE #3		
0x1AAA	SLICE #3 Data : Set AMPLITUDE (88.8V). channel 0		0x0203	0x1	0xAAA	
		-	0x0204 0x0205	0x0A	0x1	
0x0A1A	SLICE 3 Data : Set CYCLES (10), FREQUENCY (100 Hz)		070203	0,000		UNE
0x0012	SLICE #3 Data : Set SHAPEUP (32 ms) and SHAPEDN (64 ms)					
Transaction 8	1]				
Code	Description / Program SLICE #4 in RAM	1		RAI	M Conten	t
0x2C	I ² C address	1	RAM			
0x00	Select REFERENCE register to use WFS command	-	Address	SLICE #4		
0x0001	WFS command : RAM ACCESS	1→	0x0206	0x1	0x000	
0x0206	Set RAM start address for SLICE block programming	1	0x0207	0x1F	0:	k1A
0x1000	SLICE #4 Data : Set AMPLITUDE (0 V), enable channel 0	1	0x0208	0x00	0x0	0x0
0x1F1A	SLICE #4 Data : Set CYCLES (31) and FREQUENCY (100 Hz)	-				
0x0000	SLICE #4 Data : Set SHAPEUP (0 ms) and SHAPEDN (0 ms)	-				

Figure 30: RAM synthesis mode setup example 2 (continued)

	I ² C Communication Sequence			
Transaction 9				
Code	Description / Program Sequencer Entries			
0x2C	I ² C address			
0x00	Select REFERENCE register to use WFS command		Seque	encer Content
0x0002	WFS command : SEQUENCER			
0x0000	SEQUENCER_W0 value : WAVE #1 block address	SEQUENCER_W0	0x00	0x000
0x0003	SEQUENCER_W1 value : WAVE #2 block address	SEQUENCER_W1	0x00	0x003
0x0006	SEQUENCER W2 value : WAVE #3 block address	SEQUENCER_W2	0x00	0x006
0x0000	SEQUENCER W3 value	SEQUENCER_W3	0x00	0x000
0x0000	SEQUENCER W4 value	SEQUENCER_W4	0x00	0x000
0x0000	SEQUENCER W5 value	SEQUENCER_W6	0x00	0x000
0x0000		SEQUENCER_W7	0x00	0x000
0x0000		SEQUENCER_W8	0x00	0x000
0x0000		SEQUENCER_W9	0x00	0x000
0x0000	SEQUENCER_W8 value	SEQUENCER_W10	0x00	0x000
0x0000	SEQUENCER_W9 value	SEQUENCER_W11	0x00	0x000
0x0000	SEQUENCER_W10 value	SEQUENCER_W12	0x00	0x000
0x0000	SEQUENCER_W11 value	SEQUENCER_W13	0x00	0x000
0x0000	SEQUENCER_W12 value		0,00	0,000
0x0000	SEQUENCER_W13 value			
0x0000	SEQUENCER_W14 value			1
Transaction 1	0			
Transaction		WFS	WFS R	egister Content
Code	Description / Set Start and End Sequencer Entries	Address		-
0x2C	I ² C address		0x2 (
0x00	Select REFERENCE register to use WFS command			
0x0012	WFS command : RAM SYNTHESIS			
0x2000	Set START WAVEFORM_ID to 0x0 and END WAVEFORM_ID to 0x2			I

Figure 31: RAM synthesis mode setup example 2 (continued)

6.8 Piezo Actuator Sensing

BOS0614

The digital front-end gives access to internal registers (addresses 0x06 to 0x1F) to configure the pins OUT0 (F1), OUT1 (E2), OUT2 (E4) and OUT3 (F5) to sense the signals of up to four piezo actuators which can trigger detection events and haptic waveform playback.

This section details the sensing configuration and three (3) typical detection event usages: (1) automatic haptic playback, (2) GPIOs interruptions and (3) polling of sensing status registers. For detailed instructions on using BOS0614 sensing features, please refer to the application notes on Boréas <u>website</u>.

6.8.1 Sensing Configuration

The sensing of each OUTx channel is enabled using <u>SENSECONFIG [3:0]</u> bits. Four mechanisms can trigger a detection event on each OUTx independently:

- T1 and T2: Absolute voltage amplitude on OUTx. The amplitude threshold values are set in the SENSExP and SENSExR registers respectively (see Table 15) and are used to trigger detection flags T1x and T2x available in <u>SENSESTATUS</u> register.
- S1 and S2: Variation of voltage with time, i.e., slope. The two (2) slope thresholds are set with bits SLOPE1 [6:0] (S1) and SLOPE2 [6:0] (S2) in SENSExS registers (see Table 15) and are used to trigger detection flags S1x and S2x available in <u>SENSESTATUS</u> register.

Each trigger mechanism (T1, T2, S1 and S2) can be enabled independently in the sense configuration registers for each channel (*SENSEx-Sensing Configuration* column in Table 15). Depending on which trigger mechanism (T1, T2, S1 or S2) are enabled in the SENSEx register (0x07, 0x0B, 0x0F and 0x13), a detection event will be triggered based on the conditions listed in Table 13 for actuator press events and Table 14 actuator release events. The condition where bit SENSEx.T1 is set to 0x0, bit SENSEx.S1 is set to 0x0 and bit SENSEx.S2 is set to 0x1 works well to emulate mechanical button by playing haptic waveform on piezo button press and piezo button release.

The typical configuration sequence is as follows:

- 1. If needed, run the sensing calibration with the following sequence:
 - 1. Set <u>SENSECONFIG.CH0</u> / <u>CH1</u> / <u>CH2</u> / <u>CH3</u> bits to 0x0.
 - 2. Wait 10 ms.
 - 3. Set <u>SENSECONFIG.CH0</u> bit to 0x1.
 - 4. Run sensing calibration by setting bit <u>SENSECONFIG.CAL</u> to 0x1.
 - 5. Wait the calibration to finish by polling <u>SENSECONFIG.CAL</u>. The calibration duration is approximately set by bits <u>CONFIG.SHORT [1:0]</u>.
- 2. Configure the sensing conditions using registers 0x06 to 0x16.
- 3. Enable sensing on the desired channel using <u>SENSECONFIG [3:0]</u> bits.

Table 13: Press event triggering conditions configuration, where x is the channel number

Bit SENSEx.T1 Value	Bit SENSEx.S1 Value	Condition to trigger a press event
0x0	0x0	(S1x & T1x) T2x = 1
0x1	0x0	T1x = 1
0x0	0x1	S1x = 1
0x1	0x1	S1x & T1x = 1

Table 14: Release event triggering conditions configuration, where x is the channel number

Bit SENSEx.T2 Value	Bit SENSEx.S2 Value	Condition to trigger a release event
0x0	0x0	(S2x & T2x) T1x = 1
0x1	0x0	T2x = 1
0x0	0x1	S2x = 1
0x1	0x1	S2x & T2x = 1

Table 15: Sense registers for all 4 channels: haptic waveform feedback and trigger conditions

		REGISTER ADDRESS												
	SENSEx Registers-	SENSExP Registers-	SENSExR Registers-	SENSExS Registers-										
CHANNEL	Sensing	Press Absolute Voltage	Release Absolute Voltage	Slope Parameters										
	Configuration	Parameters (T1)	Parameters (T2)	(S1 and S2)										
0	<u>0x07</u>	<u>0x08</u>	<u>0x09</u>	<u>0x0A</u>										
1	<u>0x0B</u>	<u>0x0C</u>	<u>0x0D</u>	<u>OxOE</u>										
2	<u>0x0F</u>	<u>0x10</u>	<u>0x11</u>	<u>0x12</u>										
3	<u>0x13</u>	<u>0x14</u>	<u>0x15</u>	<u>0x16</u>										

6.8.2 Detection Event Usage – Automatic Haptic playback

Haptic feedback can be generated automatically upon a detection event, with minimum intervention from the MCU. The waveform played is configured using the SENSEx.WVP [2:0] and SENSEx.WVR [2:0] bits of each channel (registers 0x07, 0x0B, 0x0F and 0x13) and the waveform synthesizer. A variety of

waveforms defined in the waveform synthesizer can thus be automatically played upon detection. See section 6.7 for more detail on the waveform synthesizer.

The Table 16 lists the sequencer content played on the channel output for each WVP [2:0] and WVR [2:0] value selected:

- Column WVP [2:0] / WVR [2:0]: Value of either SENSEx.WVP [2:0] or SENSEx.WVR [2:0] in the selected register (0x07, 0x0B, 0x0F or 0x13)
- Column START WAVEFORM_ID: Sequencer WAVEFORM_ID of the beginning waveform
- Column END WAVEFORM_ID: Sequencer WAVEFORM_ID of the end waveform
- Column MAX SEGMENTS: Maximum number of sequencer WAVEFORM_IDs used for the selected WVP [2:0] / WVR [2:0] value.

To use less than the maximum number of segments available for the selected WVP [2:0] / WVR [2:0] setting, set the latter WAVEFORM_ID values to 0x000. For instance, if only 1 segment is needed with WVP [2:0] = 0x7, set the SEQUENCER WAVEFORM_ID 11 with the desired WAVE block address and set SEQUENCER WAVEFORM_ID 12, 13 and 14 to 0x000 (see section 6.7.1.3).

WVP [2:0] / WVR [2:0]	START WAVEFORM_ID	END WAVEFORM_ID	MAX SEGMENTS
0x0	0	0	1
0x1	1	1	1
0x2	2	2	1
0x3	3	3	1
0x4	4	5	2
0x5	6	7	2
0x6	8	10	3
0x7	11	14	4

Table 16: Bits WVP [2:0] and WVR [2:0] details

Automatic haptic effects for press and release are respectively activated using bits AUTOP and AUTOR of the selected channel (register 0x07, 0x0B, 0x0F or 0x13). Trigger conditions are selected using bits S1, T1, S2, T2 as described is section 6.8.1.

6.8.3 Detection Event Usage – GPIO Interruptions

GPIOs pins can generate interruptions to notify the MCU a detection event occurred on their associated channel by setting <u>GPIO3-0 [3:0]</u> bits to 0x1.

6.8.4 Detection Event Usage – Polling

For maximum flexibility in building custom sensing algorithms, the following information can be polled by the MCU:

- IC status: register IC STATUS (0x01)
- Embedded sensing trigger mechanism states: register **SENSESTATUS** (0x17)
- Processed sensing voltage of each channel: registers <u>SENSEDATA0 (0x18)</u> to <u>SENSEDATA3 (0x1B)</u>
- Raw sensing data of each channel: registers <u>SENSERAWO (0x1C)</u> to <u>SENSERAWO (0x1F)</u>

6.9 Main Register Map

Table 17 summarized the main register map and section 6.9.1 details the main registers.

Table 17: Main register map

Address	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
<u>0x00</u> REFERENCE	СНЗ	CH2	CH1	СН0	REFERE	NCE [11:0)]									
<u>0x01</u>	RSVD	SENSE	PRESS_F	RELEASE	[3:0]		STATE [1	.:0]	ovv	Οντ	MAX_	IDAC	UVLO	SC	FULL	EMPTY
IC_STATUS		ALL							DC [7.0							
READ	RSVD								BC [7:0	J						
<u>0x03</u> GPIO	GPIO3 [3:0]			gpio2 [3:0]			GPIO1 ([3:0]			GPIO0[3	3:0]		
<u>0x04</u> TC	RSVD				POL	PC	TCP [4:0]	1			TCR [4:0]			
0x05 CONFIG	SC	OD	SHORT	1:0]	STR	RAM [1:	0]	TOUT	UPI	RST	LOCK	OE	DS	PLAY [2	:0]	
<u>0x06</u> SENSECONFIG	EXT_ TRIG	ZPS_ SENS	ZPS	SEQ	SCOMP	[1:0]	SCOMPAU	JTO[1:0]	SAMP	[1:0]	SAME	CAL	СНЗ	CH2	CH1	CH0
<u>0x07</u> SENSE0	RSVD		1		WVR [2:	0]		WVP [2:	0]		AUTOR	AUTOP	S2	S1	T2	T1
0x08 SENSEOP	REP [2:0)]		AB	THRESH	HRESHOLD [11:0]										
<u>0x09</u> SENSEOR	REP [2:0	P [2:0] AB THRESHOLD [1:														
<u>0x0A</u> SENSEOS	ABS2	S2 SLOPE2 [6:0]							ABS1	ABS1 SLOPE1 [6:0]						
OxOB SENSE1	RSVD				WVR [2:0] WVP [2:			0]		AUTOR	AUTOP	S2	S1	T2	T1	
0x0C SENSE1P	REP [2:0)]		AB	THRESHOLD [11:0]											
0x0D SENSE1R	REP [2:0)]		AB	THRESH	OLD [11:	0]									
OxOE SENSE1S	ABS2	SLOPE2	[6:0]						ABS1	SLOPE1	[6:0]					
<u>OxOF</u> SENSE2	RSVD				WVR [2:	0]		WVP [2:	0]	_	AUTOR	AUTOP	S2	S1	T2	T1
0x10 SENSE2P	REP [2:0)]		AB	THRESH	OLD [11:	0]				1				1	
<u>0x11</u> SENSE2R	REP [2:0)]		AB	THRESH	OLD [11:	0]									
<u>0x12</u> SENSE2S	ABS2	SLOPE2	[6:0]	•	•				ABS1	SLOPE1	[6:0]					
<u>0x13</u> SENSE3	RSVD				WVR [2:	0]		WVP [2:	0]	•	AUTOR	AUTOP	S2	S1	T2	T1
<u>0x14</u> SENSE3P	REP [2:0)]		AB	THRESH	OLD [11:	0]				1	1	1		1	
<u>0x15</u> SENSE3R	REP [2:0)]		AB	THRESH	OLD [11:	0]									
<u>0x16</u> SENSE3S	ABS2	SLOPE2	[6:0]	1	1				ABS1	SLOPE1	[6:0]					
0x17 SENSESTATUS	S23	S13	T23	T13	S22	S12	T22	T12	S21	S11	T21	T11	S20	S10	T20	T10
0x18 SENSEDATA0	SENSED	ATA [15:0	0]	I	I	I	I		I		L	I	I	1	I	I

Confidential

Product Datasheet

Address	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
<u>0x19</u> SENSEDATA1	SENSED	ATA [15:	0]													
<u>0x1A</u> SENSEDATA2	SENSED	ATA [15:	0]													
<u>0x1B</u> SENSEDATA3	SENSED	ATA [15:	0]													
<u>0x20</u> KPA	RSVD				SB [1:0]	FSWMAX [1:0] KPA [7:0]										
0x21 KP_KI	RSVD	KIBASE	[3:0]			KP [10:0	(P [10:0]									
0x22 DEADTIME	AD_ SENSE	RSVD	_	_	DHS [6:0)]	_	_	_		_	DLS [4:0)]	_	_	
0x23 PARCAP	PARCAP	[7:0]					I_ON_SCALE [7:0]									
<u>0x24</u> SUP_RISE	RSVD			CP5	LP	VBUS [4:0] TI_RISE [5:0]										
<u>0x25</u> TRIM	TRIMRW	V [1:0]	RSVD				TRIM_O	OSC [6:0] TRIM_REG [2:0]								
<u>0x26</u> CHIPID	CHIPID [[15:0]														
0x27	RSVD															
<u>0x28</u> VFEEDBACK	RSVD		СНЗ	CH2	CH1	CH0	VFEEDB	ACK[9:0]								
<u>0x29</u> FIFO_STATE	RSVD	SVD ERROR FULL EMPTY FIFO_SPACE[9:0														
<u>0x2A</u> AUTO_STATE	RSVD				PRESS_F	RELEASE	EASE[3:0] RQS_ WAVE[2:0] PLAY_CHANNELS[3:0]				S[3:0]					
<u>0x2B</u> RAM_DATA	RAM_D	ATA [15:(0]													
0x2C SENSE_OFFSET	RSVD				SENSE_OFFSET [8:0]											

Figure 33, Figure 34 and Figure 35 presents 3 different I²C communication sequence examples using either a single communication transaction by main register access, a single communication transaction to access several main registers or the use of bit <u>STR</u> to access several main registers.

Confidential

Transaction 1								
Code	Description / Access to register 1							
0x2C	I ² C address							
0x00	Main register 1 address							
0x0000	Expected word for register 1							
Transaction 2								
Code	Description / Access to register 2							
0x2C	I ² C address							
0x00	Main register 2 address							
0x0000	Expected word for register 2							
Transaction 3								
Code	Description / Access to register 3							
0x2C	I ² C address							
0x00	Main register 3 address							
0x0000	Expected word for register 3							

Figure 33: Generic I²C communication sequence example to access a main register using a transaction

Transaction 1	
Code	Description / Access to register 1
0x2C	I ² C address
0x00	Main register 1 address
0x0000	Expected word for register 1
Code	Description / Access to register 2
0x00	Main register 2 address
0x0000	Expected word for register 2
Code	Description / Access to register 3
0x00	Main register 3 address
0x0000	Expected word for register 3

Figure 34: Generic I²C communication sequence example to access several main registers using a single transaction

Transaction 1							
Code	Description / Access to register 0x0Z						
0x2C	I ² C address						
0x0Z	Main register address						
0x0000	Expected word for register 0x0Z						
Code	Description / Access to register 0x07+1						
Coue							
0x0000	Expected word for register 0x0Z+1						
Code	Description / Access to register 0x0Z+2						
0x0000	Expected word for register 0x0Z+2						

Figure 35: Generic I²C communication sequence example to access several main registers with bit <u>STR</u> set to 0x1

6.9.1 Main Register Map Details

ADDRE	ESS: 0x0	O REFE	ERENCE	RAM 1	.:0] moc	le 0, 1)											
15	14	13	12	11	10	9	8	8 7 6 5 4 3 2 1 0									
CH3	CH2	CH1	CH0	REFER	ENCE [11:0]											
BITS	NAME			DEFAU	LT	TYPE	E DESCRIPTION										
15	CH3			0x0		R/W	Plays w	vave on	channe	13.							
							1: Data	will be	played	on the c	hannel						
							0: Char	nnel is ir	active								
14	CH2			0x0		R/W	Plays w	vave on	channe	12.							
							1: Data	i will be	played	on the c	hannel						
12	CU1			0.20		D /M	U: Char		active	11							
13	СПІ			UXU		K/ VV	Plays wave on channel 1.										
							0: Char	nnel is ir	active	on the c	namer						
12	СНО			0x0		R/W	Plays w	vave on	channe	10.							
						, ,	1: Data	will be	played	on the c	hannel						
							0: Char	nnel is ir	active								
11:0	REFER	ENCE [1	1:0]	0X00		R/W	Input o	of the RA	M/FIFC	D. Desire	d ampli	itude of	the ou	tput in 1	.2-bit		
							unsign	ed form	at. BOS	0614 wil	l work \	with a lo	ower-re	solution			
							wavefo	orm: shif	t data l	eft to ali	gn MSB	s. The a	amplitu	de in vo	lts is		
							determ	nined by	:								
							Amplitude (V) = $\frac{\text{REFERENCE [11:0]}}{2^{12} - 1} \times V_{ref} \times FB_{ratio}$										
							Where V_{ref} = 3.6 V is the ADC input range and FB_{ratio} = 19 is the										
							feedba	ck ratio	V shou	ıld alway	/s be sn	naller or	equal	to 60 V,	so		
							amplitude value should not exceed 3593 (0xE09).										

Table 18: REFERENCE register details with RAM in modes 0 and 1.

*The bits CH3, CH2, CH1, CH0 can only be changed when bits REFERENCE [11:0] are set to 0x000, if not, the change will be ignored by the controller.

ADDRE	SS: 0x0	O REFE	ERENCE	(<u>RAM</u> m	iode 2, 3	3)									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DATA [DATA [15:0]														
BITS	BITS NAME DEFAULT TYPE DESCRIPTION														
15:0	DATA [15:0]		0x0		R/W	Input c more c Channe CONFIG	lata for letail. els can k G. <u>SC</u> set	the Way be select to 0x1.	veform : ted with	Synthes In the cor	izer (WF ntent of	S), see s bits [15	ection (:12] wit	6.10 for h bit

Table 20: IC STATUS register details.

ADDRE	SS: 0x01	L IC ST	ATUS												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD	SENSE	PRESS	RELEAS	E [3:0]		STATE		OVV	OVT	MAX_	IDAC	UVLO	SC	FULL	EMPTY
	ALL									POWER					
BITS	NAME			DEFAU	LT	TYPE	DESCR	PTION							
14	SENSE	ALL .		0x1		R	Genera	l state o	of the se	ense cha	nnels.				
							0x1: No	o detect	ion ever	nt on an	y chann	iel.			
							0x0: At	least or	ne sense	e channe	el has a	detectio	on event	trigger	ed

Confidential

 ADDRESS: 0x01
 IC STATUS

 15
 14
 13
 12
 11
 10
 9

 RSVD
 SENSE
 PRESS_RELEASE [3:0]
 ST

15	14	13	12	11 10 9 8 7 6 5 4 3 2 1 0											0	
RSVD	SENSE	PRESS_	RELEAS	SE [3:0]		STATE		OVV	OVT	MAX_	IDAC	UVLO	SC	FULL	EMPTY	
DITC	ALL			DEEAL		TUDE	DECOD		ļ	POWER				ļ	ļ	
BIIS	NAME		- (a)	DEFAU	LI	TYPE	DESCR	IPTION			<u></u>					
13	PRESS_	RELEAS	E [3]	0x0		R	State o	of sense	channe	13 (OUT	3).					
							0x1: A0	tuator i	s presse	50 20						
12	DDECC		с (<u>э</u>)	00		D	UXU: AC		sreleas		2)					
12	PRESS_	RELEAS	E [2]	UXU		к	State o	n sense	channe	12 (UU1 ad	2).					
							0x1: A	ctuator i	s releas	ed						
11	PRESS	RELEAS	E [1]	0x0		R	State o	of sense	channe	I 1 (OUT	1).					
							0x1: Ad	ctuator i	s presse	ed						
							0x0: Ad	ctuator i	s releas	ed						
10	PRESS_	RELEAS	E [0]	0x0		R	State o	of sense	channe	I 0 (OUT	0).					
							0x1: Ad	ctuator i	s presse	ed						
							0x0: Ad	ctuator i	s releas	ed						
9:8	STATE	[1:0]		0x0		R	Power	state of	the BO	S0614. S	STATE [1	1:0] = 0x	3 indica	tes that	one of	
							the fol	lowing e	errors o	ccurred:	0VV, 0	VT, IDA	C, UVLO	or SC.		
							0x0: ID									
									ION							
7	0\/\/			0×0		P		ltage fa	ult bit							
<i>'</i>	000			0.00			0x1: 0	utput vo	oltage ex	xceeded	approx	imately	65 V.			
							0x0: 0	utput vo	ltage is	OK		, , ,				
6	OVT			0x0		R	Over-to	emperat	ture fau	lt bit.						
							0x1: 0	ver-tem	peratur	e detect	ed on t	he IC				
							0x0: IC	temper	ature is	ОК						
5	MAX_F	OWER		0x0		R	Indicat	es if ma	ximum	amount	of pow	er is use	ed.			
							0x1: M	aximum	power	, distort	ion likel	У				
							0x0: Ar	nount o	of power	r is acce	otable					
							Condit	ions wh	ere MA	X_POWE	R flag i	s raised	should	be avoid	led as	
4				00		D	the de	vice relia	ability a	na lite n	hay be r	eaucea.				
4	IDAC			UXU		к		tatus bit	vith cur	ront dot	oction					
								o proble	m with	current	detecti	on				
							A prof	olem wi	ith the	IDAC m	ost like	on Ny indic	ates th	at R	orla	
							is disc	onnect	ed		ost int	in marc		at risens		
3	UVIO			0x0		R	R Under-voltage fault bit.									
Ĭ						``	0x1: Vr	op under	-voltage	e detect	ed while	e trving	to outp	ut a wav	/eform	
							0x0: V	DD is OK	10110.0							
2	SC			0x0		R	Piezo L	.oad Shc	ort circu	it fault k	oit.					
							0x1: Sh	ort circ	uit dete	cted on	the pie	zo load				
							0x0: N	o short o	circuit d	etected	on the	load				
1	FULL			0x0		R	Indicat	es whet	her the	FIFO is	full.					
							0x1: Fu	ıll								
							0x0: N	ot full								

ADDRE	SS: 0x01	L IC ST	ATUS												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD	SENSE ALL	PRESS_	RELEAS	E [3:0]		STATE		OVV	OVT	MAX_ POWER	IDAC	UVLO	SC	FULL	EMPTY
BITS	NAME			DEFAU	LT	TYPE	DESCR	PTION							
0	EMPTY			0x1		R	In Dire is need 0: Nev 1: Wai In FIFC empty 0: FIFC 1: FIFC In RAM or 0x3 playin, 0: Way 1: Way	ect mod ded: v data r t befor 0 mode c 0 mode c 0 is emp 0 is not 0 is not 1 Synth), indica g: veform veform	e (<u>RAM</u> needed e sendi (<u>RAM</u> oty empty esis or ates wh done is not o	bits se ng new bits set RAM p en the	t to 0x(data to 0x1) layback haptic), indica), indica (mode wavefo	ates wh ates wh (<u>RAM</u> k arm has	hen nev en FIFC bits set finishe	w data) is to 0x2 d

Table 21: READ register details

ADDRE	SS: 0x02	2 REAI	2												
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														0
RSVD BC [7:0]															
BITS	rs NAME DEFAULT TYPE DESCRIPTION														
7:0	BC [7:0]		0x26		R/W	Addres	s of inte	ernal reg	gister wl	hose coi	ntent is	returne	d on	
							commu	inicatio	n bus.						

Table 22: GPIO register details

ADDRE	DRESS: 0x03 GPIO														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPIO3	[3:0]			GPIO2	[3:0]			GPIO1	[3:0]			GPIO0	[3:0]		
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
15:12	GPIO3 [[3:0]		0x0		R/W	Detern	nines the	e GPIO	3 behavi	iour.				
							By sett	ing GPIC	03 [3:0] to 0x7	and sett	ting bit E	XT TR	G to Ox	1, the
							GPIO3	will act	as an <i>iı</i>	<i>nput</i> to t	rigger h	aptic wa	veform	ាs on ch	annel 3
							(more	detail in	sectio	n 6.2.10).				
							The fol	llowing (GPIO3	[3:0] valı	ues dete	ermine tl	he info	rmation	output
							on GPI	03:		1.0					
							0x0: St	ate of se	ense ch	nannel 3:					
								1: Actua	itor is r	released					
							0v1.0	o: Actua	NOT IS P	status a	n chann	0 2			
							UXI. De		event	status 0 n event t	riggere	d on cha	nnel 2		
								0: Detec	tion ev	vent trig	gered o	n channe	-13		
							0x2: De	etection	event	status o	f anv ch	annel:			
								1: No de	etection	n event t	triggere	d in any	channe	2	
								0: Detec	tion ev	vent trig	gered oi	n at leas	t one c	hannel	
							0x3: In	dicates	whethe	er the wa	aveform	is done	or the	FIFO en	npty
							(st	tate of <u>E</u>	MPTY	bit):					
								1: Wave	form is	s not dor	ne, FIFO	is not er	mpty		
								0: Wave	form d	lone, FIF	O is em	pty			
							0x4: In	dicates i	is the B	3OS0614	is in Err	or state	, i.e., bi	ts <u>STAT</u>	<u>E [1:0]</u>
							ar	e 0x3:							
								1: No er	ror det	tected					
							OVELIN	U: Error	uetect	ed	nount o	fnower	ic ucod	leama	ac hit
							0X3. III			mum. df		i power	is used	(same)	ας μι
							111	1. Amoi	<u>unt of n</u>	nower is	accenta	ble			
								0: Maxir	num p	ower. di	stortion	likelv			
							0x6: In	Direct N	Node (l	bit RAM	[1:0] se	t to 0x0)	, indica	ates who	en next
							da	ita is nee	eded by	y genera	ting a p	, ulse of n	ninimu	m 0.5 μ	s:
								1: Wait	before	sending	new da	ta			
								0: New (data ne	eeded (p	ulse of ı	minimun	n 0.5 μ	5)	
							0x7: W	hen bit	EXT TF	RIG is set	t to 0x0,	the GP	IO3 ind	licates v	whether
							an	Automa	atic Ha	ptic Play	back (se	ee sectio	n 6.8.2) has be	een
							re	quested	on any	y channe	el (same	as bit <u>R</u>	QS PLA	<mark>∢Y</mark>):	
								1: Autor	natic H	laptic Pla	ayback t	riggered	l		
								0: No Aι	utomat	ic Haptic	c Playba	ck trigge	ered		

Confidential

Product Datasheet

ADDRE	SS: 0x03	GPIC)												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPIO3	[3:0]	•	•	GPIO2	[3:0]			GPIO1	[3:0]	•		GPIO0	[3:0]		•
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
11:8	GPIO2	[3:0]		0x0		R/W	Detern	nines the	e GPIO	2 behavi	our.				
							By sett	ing GPIC	D2 [3:0]] to 0x7 a	and sett	ing bit E	XT TRI	<u>G</u> to Ox	1, the
							GPIO2	will act a	as an <i>ir</i>	<i>put</i> to t	rigger ha	aptic wa	veform	is on ch	annel 2
							(more	detail in	sectio	n 6.2.10)).				
							The fol	lowing (GPIO2 [[3:0] valu	ues dete	rmine tl	he infoi	mation	output
							on GPI	03:							
							0x0: St	ate of se	ense ch	annel 2:					
								1: Actua	itor is r	eleased					
							0v1· D4	0. Actua	event	status or	n chann	ما ۲۰			
							0.1. 00	1 · No de	event	h event t	riggered	d on cha	nnel 2		
								0: Detec	ction ev	/ent trigg	gered or	n channe	el 2		
							0x2: De	etection	event	status of	f any cha	annel:	-		
								1: No de	etectior	n event t	riggered	d in any	channe	el .	
								0: Detec	ction ev	ent trigg	gered or	n at leas	t one cl	nannel	
							0x3: In	dicates	whethe	er the wa	aveform	is done	or the	FIFO en	npty
							(st	ate of <u>E</u>	<u>MPTY</u>	oit):					
								1: Wave	form is	s not dor	ne, FIFO	is not e	mpty		
								0: Wave	form d	one, FIF	O is emp	oty			5 [4 0]
							0x4: In	dicates i	is the B	050614	is in Err	or state	, i.e., bi	ts <u>SIAI</u>	<u>E [1:0]</u>
							ar	e UX3: 1. No. or	ror dot	octod					
								1. NO EI	detect	ecteu od					
							0x5 · In	dicates i	if maxir	num an	nount of	fnower	is used	(same :	as hit
							M	AX POV	VER):		loune of	ponei	15 4564	Joanne	
								1: Amou	unt of p	ower is a	accepta	ble			
								0: Maxir	num po	ower, dis	stortion	likely			
							0x6: In	Direct N	Node (l	bit <u>RAM</u>	[1:0] set	t to 0x0)	, indica	tes whe	en next
							da	ta is nee	eded by	y genera [.]	ting a p	ulse of n	ninimur	n 0.5 μ	s:
								1: Wait	before	sending	new da	ta			
								0: New (data ne	eded (p	ulse of r	ninimun	n 0.5 µs	5)	
							0x7: W	hen bit	EXT TF	RIG is set	to 0x0,	the GP	IO2 ind	licates v	whether
							an	Automa	atic Haj	ptic Play	back (se	e sectio	n 6.8.2) has be	en
							re	quested	on any	/ channe	l (same	as bit <u>R</u>	QS_PLA	<u>(Y</u>):	
								1: Autor	natic H	aptic Pla	iyback t	riggered	 		
								υ: No Aι	utomat	ic Haptic	: Playba	ck trigge	ered		

ADDRESS: 0x03 GPIO 15 14 13 12 11 10 8 5 4 2 1 0 9 7 6 3 GPIO3 [3:0] GPIO2 [3:0] GPIO1 [3:0] GPIO0 [3:0] DEFAULT DESCRIPTION BITS NAME TYPE R/W 7:4 GPIO1 [3:0] 0x0 Determines the GPIO1 behaviour. By setting GPIO1 [3:0] to 0x7 and setting bit EXT TRIG to 0x1, the GPIO1 will act as an *input* to trigger haptic waveforms on channel 1 (more detail in section 6.2.10). The following GPIO1 [3:0] values determine the information output on GPIO1: 0x0: State of sense channel 1: 1: Actuator is released 0: Actuator is pressed 0x1: Detection event status on channel 1: 1: No detection event triggered on channel 1 0: Detection event triggered on channel 1 0x2: Detection event status of any channel: 1: No detection event triggered in any channel 0: Detection event triggered on at least one channel 0x3: Indicates whether the waveform is done or the FIFO empty (state of EMPTY bit): 1: Waveform is not done, FIFO is not empty 0: Waveform done, FIFO is empty 0x4: Indicates is the BOS0614 is in Error state, i.e., bits STATE [1:0] are 0x3: 1: No error detected 0: Error detected 0x5: Indicates if maximum. amount of power is used (same as bit MAX POWER): 1: Amount of power is acceptable 0: Maximum power, distortion likely 0x6: In Direct Mode (bit RAM [1:0] set to 0x0), indicates when next data is needed by generating a pulse of minimum 0.5 µs: 1: Wait before sending new data 0: New data needed (pulse of minimum 0.5 µs) 0x7: When bit EXT TRIG is set to 0x0, the GPIO1 indicates whether an Automatic Haptic Playback (see section 6.8.2) has been requested on any channel (same as bit RQS PLAY): 1: Automatic Haptic Playback triggered 0: No Automatic Haptic Playback triggered

Confidential

Product Datasheet

ADDRE	SS: 0x03	3 GPIC)												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPIO3	[3:0]			GPIO2	[3:0]			GPIO1	[3:0]	•		GPIO0	[3:0]		•
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
3:0	GPIO0	[3:0]		0x0		R/W	Detern	nines the	e GPIO	0 behavi	our.				
							By sett	ing GPIC	00 [3:0]] to 0x7 a	and sett	ing bit 🗄	XT TRI	<u>G</u> to Ox	1, the
							GPIO0	will act a	as an <i>ir</i>	<i>put</i> to t	rigger ha	aptic wa	veform	is on ch	annel 0
							(more	detail in	section	n 6.2.10)).				
							The fo	lowing (GPIO0 [[3:0] valu	ues dete	rmine tl	he infoi	mation	output
							on GPI	00:							
							0x0: St	ate of se	ense ch	annel 0:					
								1: Actua	itor is r	eleased					
							0,1.0	U: Actua	overt	status or	a chann	ol 0.			
							UXI. De	1. No de	evenu	sidius Oi n ovent t	riggered	t on cha	nnel 0		
								1. No uc	tion ev	ent trigg	pered or	n channe			
							0x2: De	etection	event	status of	f anv cha	annel:			
							_	1: No de	etection	n event t	riggered	d in any	channe	l	
								0: Detec	ction ev	ent trigg	gered or	n at leas	t one cl	nannel	
							0x3: In	dicates	whethe	er the wa	veform	is done	or the	FIFO en	npty
							(st	ate of <u>E</u>	<u>MPTY</u>	oit):					
								1: Wave	form is	s not dor	ne, FIFO	is not e	mpty		
								0: Wave	form d	one, FIF	O is emp	oty			
							0x4: In	dicates i	is the B	OS0614	is in Err	or state	, i.e., bi	ts <u>STAT</u>	E [1:0]
							ar	e 0x3:							
								1: NO er 0: Error	ror det	ected					
							0v5 · In	dicatos i	if mavir	eu mum an		fnower	المعيد عا	leame	as hit
							0X3. III	AX POW	VFR)	num. an		power	13 0300	(same)	
								1: Amou	unt of p	ower is a	accepta	ble			
								0: Maxir	num po	ower, dis	stortion	likely			
							0x6: In	Direct N	Node (l	bit <u>RAM</u>	[1:0] set	t to 0x0)	, indica	tes whe	en next
							da	ta is nee	eded by	y genera [.]	ting a p	ulse of n	ninimur	n 0.5 μ	s:
								1: Wait	before	sending	new da	ta			
								0: New (data ne	eded (p	ulse of r	ninimun	n 0.5 µs	5)	
							0x7: W	hen bit	<u>EXT TF</u>	<u>RIG</u> is set	to 0x0,	the GP	IO0 ind	licates v	whether
							an	Automa	atic Haj	ptic Play	back (se	e sectio	n 6.8.2) has be	en
							re	quested	on any	/ channe	l (same	as bit <u>R</u>	<u>QS_PLA</u>	<u>(Y</u>):	
								1: Autor	natic H	aptic Pla	yback t	riggered	1		
								0: Νο Αι	utomat	ic Haptic	: Playba	ck trigge	ered		

Table 23: TC register details

ADDRE	ESS: 0x04	4 TC													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD				POL	РС	TCP [4:	:0]				TCR [4	l:0]			
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
11	POL			0x1		R/W	Sets GI 0x1: Tr 0x0: Tr	PIO inpu igger pu igger pu	t trigge Ilse is a Ilse is a	er polarit ctive hig ctive low	y. h /				
10	PC			0x1		R/W	Shorts specific mome 0x1: Sh 0x0: Do PC can modes unexpe	the piez ed by TC ntum en nort piez o not sh be set t . In FIFC ected re	to by sh CP [4:0] to at en ort piez to 0x1 o and Di sults.	orting se and TCR om the p d of wav to at the only in RA irect mo	ensing s [3:0]. piezo. veform end of AM Play des, bit	switch fc This feat the wav /back an PC must	or the du ure is us eform d RAM S t be set	uration sed to d Synthesi to 0x0 t	issipate is o avoid
9:5	TCP [4:	:0]		0x5		R/W	Sets th button	e outpu press e	t shorti vent (t _s t _{shor}	ing durat hort-press) i t-press =	ion aft n millis = <i>TCP</i> [er the er econds, 4: 0] × 3	nd of a v determ 3.2 <i>ms</i>	vavefori ined by:	m for a
4:0	TCR [4:	:0]		0x5		R/W	Sets th button	e outpu release	t shorti event t _{short}	ing durat (t _{short-relea} –release	ion aft se) in m = TCR	er the er iillisecon [4: 0] ×	nd of a v ds, dete 3.2 <i>ms</i>	vavefori ermined	m for a by:

Table 24: CONFIG register details

ADDRE	SS: 0x05	5 CON	FIG												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SC	OD	SHORT	[1:0]	STR	RAM [1:0]	TOUT	UPI	RST	LOCK	OE	DS	PLAY [2	2:0]	
BITS	NAME			DEFAU	LT	TYPE	DESCR	PTION		·		•			
15	SC			0x0		R/W	Sets th	e behav	iour of	the chai	nnel sel	ection w	/hen pla	ying fro	m RAM
							for RA	M Playb	ack mo	ode (bits	RAM=	0x2) and	RAM S	synthesi	s mode
							(bits <u>R</u> /	<u>4M</u> =0x3).						
							0x0: Cł	nannels	are sele	ected as	read in	RAM			
							0x1: Cł	nannels	are sele	ected wit	th the c	ontent c	of bits [1	5:12] of	f
							REFERE	ENCE re	gister.						
14	OD			0x0		R/W	Sets th	e GPIOs	outpu	t type.					
							0x0: 0	ben-dra	in						
						- 4	0x1: Pt	ISN-PUII	<u> </u>			6			
13:12	SHORT	[1:0]		0x2		R/W	Sets th	e durati	on of t	he piezo	zeroing	g for auto	o-calibra	ition.	
							0x0: 20	ο μs							
							0x1:35	ομs							
							0x2. 30	λο μs 100 μs							
11	STR			0×0		R/\//	Enable	s autom	atic in	rementi	ng of th	e regista	er addre	ss durir	וס
				0.00		1.,	commi	inicatio	n. Allov	ws the w	riting of	f several	conseci	itive rea	isters
							using c	only the	addres	s of the f	irst reg	ister (se	e Figure	35).	5.01010
							1: Add	, ress aut	o-incre	ment ev	ery two	bytes	0	,	
							0: User	provide	es one	byte of a	ddress	at every	two byt	es	
							Regard	less the	STR bi	t value, a	an addr	ess of Ox	:00 (<u>REF</u>	ERENCE	
							registe	r) will n	ot auto	matically	/ incren	nent add	lress for	more e	fficient
							writes	to the F	IFO or '	Wavefor	m Syntl	nesizer.			

Product Datasheet

ADDRE	SS: 0x05	5 CON	FIG	1	1		Ŧ	T	1	1	1	1	T	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SC	OD	SHORT	[1:0]	STR	RAM [1:0]	TOUT	UPI	RST	LOCK	OE	DS	PLAY [2	2:0]	
BITS	NAME			DEFAU	ILT	TYPE	DESCR	IPTION							
10:9	RAM [1	L:0]		0x1		R/W	Sets pla	ayback r	node.						
							0x0: Di	rect Mo	de (RAI	M not us	ed)				
							0x1: FI	FO Mod	e						
							0x2: R/	AM Play	back M	ode					
						- 6	0x3: R/	AM Synt	hesis M	lode					
8	TOUT			0x0		R/W	Enable	s the tin	neout o	f the wa	veform	playing	in FIFO	mode o	r Direct
							mode.	A timeo	oc in the	rs and t	ne BOSC	J614 au	tomatica	any go to	0 SLEEP
							modea				ing cont	intions.			
										5 0 X 0					
								The Fl		mntv					
								No da	ita (sam	inle) has	heen ri	eceived	on the d	ligital	
							_	interf	ace.	ipic) nus	beenin		on the c	ingitai	
							0x1: Er	nable							
							0x0: Di	sable							
7	UPI			0x1		R/W	Enable	s the Ur	nidirecti	onal Pov	wer Inp	ut.			
							0x1: Er	nable							
							0x0: Di	sable							
6	RST			0x0		R/W	Softwa	re reset							
							The co	ntroller	resets i	nternal	register	s to defa	ault valu	es and g	goes
							into ID	LE mode	Э.						
							0x1: RE	SET							
							0x0: No	ormal op	peratior	ו					
5	LOCK			0x0		R/W	Write-	protect	register	s. No re	gisters a	are write	e-protec	ted if bi	t <u>OE</u> is
							0x0 wh	latever i		value.		avec at (a va al	
									rs are v	vrite-pro	hit OF	except <u>(</u>	Ov1	and	
								sahle	<u>L</u> regist			15 501 10	0.11		
4	OF			0x0		R/\//	Enable	s wavef	orm nla	vhack					
7				0.00		1.,	0x1 · Fr	able		yback.					
							0x0: Di	sable							
3	DS			0x0		R/W	Sets th	e power	r mode	when no	ot plavir	ng wave	forms (C	DE = 0).	
							0x1: SL	.EEP			. ,	0	·	,	
							0x0: ID	LE							
2:0	PLAY [2	2:0]		0x7		R/W	Detern	nines the	e rate a	t which	data is ı	read to d	create o	utput	
							wavefo	orms:							
							0x0: 2	1024 ksp	os						
							0x1:	512 ksp	DS						
							0x2:	256 ksp	DS						
							0x3:	128 ksp	DS						
							0x4:	64 KSP)S						
							0x5:	52 KSF 16 ker	20						
							0x7.	20 KSH	,,, ,,						
L	Î.			1		1	UN7.	0 1/2							

Table 25: SENSECONFIG register details

ADDRE	SS: 0x06	5 SEN	SECONF	IG											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EXT_ TRIG	ZPS_ SENS	ZPS	SEQ	SCOM	P [1:0]	SCOM [1:0]	PAUTO	SAMP[1:0]	SAME	CAL	CH3	CH2	CH1	CH0
BITS	NAME			DEFAU	ILT	TYPE	DESCRI	PTION							
15	EXT_TF	RIG		0x0		R/W	Allows	GPIO to	trigger	a press/	'release	haptic v	wavefor	m feedb	back as
							defined	l in the	corresp	onding \	NVP [2:	0] and V	VVR [2:0	0] registe	ers.
							Externa	I trigge	r polarit	ty is set l	oy <u>POL</u> .			07	
							0x1: Ex	external ti	rigger a al trigge	ctivated er consid	for cha lered.	nnei wit	n <u>GPIO</u>	= UX7	
14	ZPS_SE	NS		0x0		R/W	Sets se	nsitivity	of the 2	ZPS wak	eup sigr	nal.			
							0x1: Lo	w sensi	tivity						
4.0	700					- h + i	0x0: Hig	gh sensi	tivity						
13	ZPS			0x0		R/W	Sets if a	a ZPS de	tection	need a v	valid se	nsing de	tection	to be	
								7PS dete	a valiu p action is	s recogni	zed as	a nress (not rec	ommeno	hed
							se	e sectio	n 10)	, coopin			100100	onniene	acu,
							0x0: A 2	ZPS dete	ection w	vill also r	need a v	/alid sen	sing det	tection t	o be
							re	cognize	d as a p	ress					
12	SEQ			0x0		R/W	Sets if r	nore th	an one	channel	with au	ito trigg	ering ca	n play	
							Waveto	rms at i	ne sam	e time.	aveforr	ncatac	amo tin		
							0x0: Or 0x1: Sir	nultane	ous cha	annels ca	in play	wavefor	ms at th	ie same	time.
11:10	SCOMF	P [1:0]		0x0		R/W	Sets tin	ne betw	een zer	oing of o	output	channels	s to null	the effe	ect of
							dischar	ge on tł	ne sense	ed chanr	nels.				
							0x0: 10	0 ms							
							0x1:50	ms mc							
							0x2: 23	.5 ms							
9:8	SCOMF	PAUTO	1:0]	0x1		R/W	Change	s the be	ehaviou	r of SCO	MP afte	er the er	nd of a v	vaveforr	n play:
		•					0x0: Va	lue of S	COMP i	s always	used				. ,
							0x1: 12	.5 ms, 2	25 ms, 5	0 ms					
							0x2: 2×	12.5 ms	s, 25 ms	, 50 ms					
7.6	CANAD	1.01		0.2		D/M	UX3: 4×	12.5 ms	$5, 2 \times 25$	5 ms, 50	ms oltogo t				
7.0	SAIVIP	[1.0]		UXS		r/ vv	0x0: +/2	-150 m\	Joint Of /	sense v	onage i	.0.			
							0x1: +/	-200 m\	/						
							0x2:+/-	-250 m\	/						
							0x3: +/-	-300 m\	/						
							Default	value i	s recom	mended	l				
5	SAME			0x1		R/W	Enables	s the us	e of the	same co	onfigura	ation for	all activ	/e sensir	ng
				-		, ,	channe	ls.			0.				0
	0x1: Enable (SENSE0X registers (0x07-0x0A) are used)														
L							0x0: Dis	sable							
4	CAL			0x0		R/W	Calibrat	tes inter	rnal sen	ise interf	ace. Th	e sense	interfac	e should	d be
							setting	CAL hit	to use	The dev	vice nee	nure (se ods to be	e secuo calibra	ted only	y once
							after re	set or p	ower-u	p.				cca only	51100
							0x1: Int	ernal se	ense int	erface w	vill be ca	alibrated	l, bit is s	self-clea	r
							0x0: Dis	sable							

Product Datasheet

ADDRE	SS: 0x0	6 SEN	SECONF	IG											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EXT_ TRIG	ZPS_ SENS	ZPS	SEQ	SCOM	P [1:0]	SCOM [1:0]	PAUTO	SAMP[1:0]	SAME	CAL	CH3	CH2	CH1	CH0
BITS	NAME			DEFAU	LT	TYPE	DESCRI	PTION		•				·	•
3	CH3			0x1		R/W	Enables	s channe	el 3 sen	sing.					
0x1: Enable sensing															
		0x0: Disable sensing													
2	CH2			0x1		R/W	Enables	s channe	el 2 sen	sing.					
							0x1: En	able ser	nsing						
							0x0: Di	sable se	nsing						
1	CH1			0x1		R/W	Enables	s channe	el 1 sen	sing.					
							0x1: En	able ser	nsing						
							0x0: Di	sable se	nsing						
0	CH0			0x1		R/W	Enables	s channe	el 0 sen	sing.					
							0x1: En	able ser	nsing						
							0x0: Di	sable se	nsing						

Table 26: SENSEO register details

ADDRE	SS: 0x0	7 SEN	SE0												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD				WVR [2:0]		WVP [2	2:0]		A U T O R	AUTOP	S2	S1	T2	T1
BITS	NAME			DEFAU	ILT	TYPE	DESCR	IPTION							
11:9	WVR [2:0]		0x0		R/W	Sets th	e wavef	orm in \	WFS to b	oe playe	d when	an actu	uator rel	ease
							detecti	on ever	t occurs	s. See Ta	able 16 f	or more	e detail.		
8:6	WVP [2:0]		0x0		R/W	Sets th	e wavef	orm in \	WFS to k	pe playe	d when	an actu	uator pre	ess
							detecti	on ever	t occurs	s. See Ta	able 16 f	or more	e detail.	•	
5	AUTO	R		0x0		R/W	Enable	s the au	tomatic	wavefo	rm star	t (define	ed with		
							SENSE).WVR [2:0]) up	on eithe	er (1) a p	iezo ac	tuator r	elease	
							detecti	on ever	t for ch	annel 0	(conditi	ons det	ailed in	the list l	oelow
							and in	Table 1	4) or (2) an exte	ernal tri	gger eve	ent occi	urred on	GPIO0
							(as det	ailed in	section	6.2.10).					
							0x1: Er	nable							
							0x0: Di	sable			<i>.</i> .				
							Piezo a	ctuator	release	conditio	on for d	etection	n triggei	ring:	-104
							If SENS	E0.12 =	0 & SEN	ISE0.S2	= 0, will	start or	א (<u>520</u> 8	k <u>120</u>) _	<u>110</u> *
							IT SENS	E0.12 =		ISEU.SZ	= 0, Will	start or	1 <u>120</u>		
							IT SEINS	E0.12 =	1 9. CEN	15E0.52	= 1, WIII - 1ill	start or	1 <u>520</u>	T20	
4		D		0.0				EU.12 -		ISEU.SZ	- 1, Will	start or	1 <u>320</u> Q	120	
4	AUTUR	٢		0x0		r, vv	SENSE	S the au	10111atic 2.01) un	on eithe	or (1) a r	iezo act	tuator r	nress det	ection
							event f	or chan	nel 0 (co	ondition	s detail	ed in the	e list be	low and	in
							Table	13) or (2	2) an ext	ternal tr	igger ev	ent occ	urred o	n GPIO0	(as
							detaile	d in sec	tion 6.2	.10).					(
							0x1: Er	able		,					
							0x0: Di	sable							
							Piezo a	ctuator	press co	ondition	for det	ection t	riggerin	ng:	
						1	If SENS	E0.T1 =	0 & SEN	SE0.S1	= 0, will	start or	ח (<u>\$10</u> 8	k <u>T10) </u>	<u> T20</u> *
						1	If SENS	E0.T1 =	1 & SEN	ISE0.S1	= 0, will	start or	ו <u>T10</u>		
						1	If SENS	E0.T1 =	0 & SEN	ISE0.S1	= 1, will	start or	ו <u>S10</u>		
						1	If SENS	E0.T1 =	1 & SEN	SE0.S1	= 1, will	start or	ו <u>\$10</u> &	<u>T10</u>	

Product Datasheet

ADDRE	SS: 0x07	7 SENS	SEO												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD				WVR [2	2:0]		WVP [2	2:0]		AUTOR	AUTOP	S2	S1	T2	T1
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							•
3	S2			0x1		R/W	Enable the SEI 0x1: Er 0x0: Di	s the co NSEOS SI nable sable	mpariso LOPE2 [6	on of the 5:0] for <u>:</u>	e channe <u>S20</u> dete	el 0 sens ection tr	ed volta riggering	age slop g.	e to
2	S1			0x0		R/W	Enable the SEI 0x1: Er 0x0: Di	s the co NSEOS SI nable sable	mpariso LOPE1 [6	on of the 5:0] for	e channe <u>S10</u> dete	el 0 sens ection tr	ed volta riggering	age slop g.	e to
1 T2 OxO R/W Enables the contour to the SENSEOR Ox1: Enable 0x0: Disable 0x0 R/W Enables the contour to the SENSEOR Ox1: Enable										n of the HOLD [1	e channe L1:0] for	el 0 sens • <u>T20</u> de	ed volta	age amp triggerir	litude ng.
0 T1 0x1 R/W Enables the comp to the SENSEOP TH 0x1: Enable 0 T1 0x1 N/W Enables the comp to the SENSEOP TH 0x1: Enable											channe [1:0] for	el 0 sens <u>T10</u> de	ed volta	age amp triggerir	litude ng.

*Configuration where S2, T2, S1, T1 are all set to 0x0 may result in unexpected behaviour.

Table 27: SENSEOP register details

ADDRE	SS: 0x08	3 SENSE	OP												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REP [2	:0]		AB	THRES	HOLD	[11:0]									
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
15:13	REP [2:	0]		0x5		R/W	Sets th needs flag on 0x0:1 µ 0x1:10 0x2: 50 0x3: 1 0x4: 2 0x5: 4 0x6: 8 0x7: 16	e time c to be ab channe us 0 μs 00 μs ms ms ms ms ms 5 ms	luring w ove/be I 0.	/hich the low THR	e amplit EESHOLE	ude of t) [11:0] †	he sens	ed volta <u>10</u> detec	ge ction
12	AB			0x0		R/W	Sets if THRES 0x1: Be 0x0: Al	sensed v HOLD [1 elow bove	voltage 1:0] to :	amplitu set <u>T10</u>	de shou detectic	ld be ab on flag o	ove/bel n chann	ow the el 0.	
11:0	THRES	HOLD [1	.1:0]	0x1A6		R/W	Sets th The re THRES	e amplit quired a <i>Ampli</i> HOLD [1	tude red mplitud i <i>tude</i> (1 1:0] is a	quired to le in vol ¹ 7) = TH signed	o set <u>T1(</u> ts is det <i>IRESH(</i> decimal	D detect ermined OLD [11: value.	ion flag by: 0] × 1.	on char 66 mV	nnel 0.

Table 28: SENSEOR register details

ADDRE	SS: 0x09	SENSE	OR											-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REP [2	:0]		AB	THRESH	HOLD [1	.1:0]									
BITS	NAME			DEFAU	LT	TYPE	DESCR								
15:13	REP [2:	0]		0x0		R/W	Sets th	ne time c	luring w	vhich the	e amplit	ude of t	he sens	ed volta	ige
							needs	to be ab	ove/be	low THR	ESHOLD	0 [11:0]	to set <u>T</u>	20 deteo	ction
							flag or	n channe	10.						
							0x0:1	μs							
0x1:100 μs 0x2: 500 μs															
			0x2: 500 μs												
	0x3: 1 ms														
							0x4: 2	ms							
							0x5:4	ms							
							0x0:8	nns 6 ms							
12	٨B			0×0		P/\//	Sots if	sonsod y	oltago	amplitu	do shou	ld bo ab	ove/hel	ow the	
12	AD			0.0		1.7 VV	THRES	HOLD [1	1.01 to	set T20	detectio	n flag o	n chann	el 0	
							0x1: B	elow	1.0] (0	500 <u>120</u>		in hug o		ci 0.	
							0x0: A	bove							
11:0	THRESH	HOLD [1	1:0]	0x000		R/W	Sets th	ne amplit	tude red	quired to	o set T20) detect	ion flag	on char	nnel 0.
		-				-	The re	quired a	mplitud	de in vol [.]	ts is det	ermined	l by:		
								Ampli	tude (V) = TH	IRESHO	DLD[11:	0] × 1.	66 mV	
							THRES	HOLD [1	1:0] is a	a signed	decimal	value.			

Table 29: SENSOS register details

ADDRE	SS: 0x0/	A SENS	SEOS																
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
ABS2	SLOPE2	2 [6:0]						ABS1	SLOPE	1 [6:0]									
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION											
15	ABS2			0x1		R/W	Sets if	sensed	voltage	slope v	alue sho	ould be a	above/k	pelow th	e				
							SLOPE	2 [6:0] t	o set <u>S2</u>	20 detec	tion flag	g on cha	nnel 0.						
							0x1: B	elow											
							0x0: Above												
14:8	SLOPE	2 [6:0]		0x7B		R/W	R/W Sets signal slope threshold in mV/ms required to set <u>\$20</u> detection												
						flag on channel 0. The slope (S) in mV/ms is determined by:													
						$S(mV/ms) = SLOPE2[6:0] \times 2.2$													
							SLOPE	2 [6:0] is	s a sign	ed decir	nal valu	e.							
7	ABS1			0X0		R/W	Sets if	sensed	voltage	slope v	alue sho	ould be a	above/b	pelow th	е				
							SLOPE	1 [6:0] t	o set <u>S1</u>	lo detec	tion flag	g on cha	nnel 0.						
							0x1: B	elow											
							0x0: A	bove											
6:0	SLOPE	1 [6:0]		0x0		R/W	Set sig	nal slop	e thres	hold in r	nV/ms ı	required	to set	<u>S10</u> dete	ection				
							flag or	n channe	el 0. The	e slope (S) in m\	//ms is c	letermi	ned by:					
									S(mV	'/ms) =	SLOP	E1[6:0]	× 2.2						
							SLOPE	1 [6:0] is	s a sign	ed decir	nal valu	e.							

Table 30: SENSE1 register details

ADDRE	SS: 0x0I	B SEN	SE1												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD				WVR [2	2:0]		WVP [2	2:0]		AUTOR	AUTOP	S2	S1	T2	T1
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
11:9	WVR [2	2:0]		0x0		R/W	Sets w detect	aveform ion ever	n in WFS nt occur	S to be p rs. See Ta	layed w able 16 f	hen an a for more	actuato e detail.	r release	5
8:6	WVP [2	2:0]		0x0		R/W	Sets w detect	aveform ion ever	n in WFS nt occur	S to be pl rs See Ta	layed w ble 16 fe	hen an a or more	actuato detail.	r press	
5	AUTOF			0x0		R/W	Enable SENSE detect and in (as det Ox1: Er Ox0: Di Piezo a If SENS If SENS If SENS	tes the au 1.WVR [ion ever Table 1 tailed in hable isable actuator 5E1.T2 = 5E1.T2 = 5E1.T2 =	ttomation 2:0]) up nt for ch (4) or (2 section release 0 & SEI 1 & SEI 0 & SEI 1 & SEI	c wavefo pon eithe hannel 1 2) an exte n 6.2.10). e conditio NSE1.S2 NSE1.S2 NSE1.S2 NSE1.S2	rm star r (1) a p (conditi ernal trip on for d = 0, will = 0, will = 1, will = 1, will	t (define oliezo ac: ons det gger eve etectior start or start or start or start or	ed with tuator realed in ent occu trigger (S21 & S21	elease the list I urred on ing: k T21) T21	below GPIO1 <u>T11</u> *
4	AUTOF)		0×0		R/W	Enable SENSE event f Table detaile Ox1: Er Ox0: Di Piezo a If SENS If SENS If SENS	es the au 1.WVP [for chan 13) or (ed in sec hable isable actuator SE1.T1 = SE1.T1 = SE1.T1 = SE1.T1 =	Itomati 2:0]) up nel 1 (c 2) an ex tion 6.2 press c 0 & SEI 1 & SEI 0 & SEI 1 & SEI 1 & SEI	c wavefo con eithe condition xternal tr 2.10). condition NSE1.S1 NSE1.S1 NSE1.S1 NSE1.S1	rm start r (1) a p s detaild igger ev for det = 0, will = 0, will = 1, will = 1, will	t (define viezo aci ed in the vent occ ection t start or start or start or start or start or	ed with tuator p e list be urred o riggerin n (<u>S11</u> & n <u>S11</u> & s <u>S11</u> &	ress det low and n GPIO1 g: <u>T11</u>)]	cection in (as
3	S2			0x1		R/W	Enable the SE 0x1: Er 0x0: Di	es the co NSE1S S nable isable	mparis LOPE2	on of the [6:0] for	e channe <u>S21</u> dete	el 1 sens ection t	sed volta riggerin	age slop g.	e to
2	S1			0x0		R/W	Enable the SE 0x1: Er 0x0: Di	es the co NSE1S S nable isable	mparis	on of the [6:0] for	e channe <u>S11</u> dete	el 1 sens ection t	sed volta riggerin	age slop g.	e to
1	T2			0x0		R/W	Enable to the 0x1: Er 0x0: Di	es the co SENSE1 nable isable	ompariso R THRE	on of the SHOLD [1	e channe L1:0] for	el 1 sens • <u>T21</u> de	sed volta tection	age amp triggerir	olitude ng.
0 T1 0x1 R/W Enables the comparison of the channel 1 sensed to the SENSE1P THRESHOLD [11:0] for T11 detec 0x1: Enable											sed volta tection	age amp triggerir	olitude ng.		

*Configuration where S2, T2, S1, T1 are all set to 0x0 may result in unexpected behaviour.

Table 31: SENSE1P register details

ADDRE	SS: 0x00	<u>SENSE</u>	1P											-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REP [2	2:0]		AB	THRES	HOLD	[11:0]									
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
needs to be above/below THRESHOLD [11:0] to set <u>T11</u> dete flag on channel 1. 0x0:1 μs 0x1:100 μs 0x2: 500 μs 0x3: 1 ms 0x4: 2 ms 0x5: 4 ms 0x6: 8 ms 0x7: 16 ms											ed volta <u>11</u> dete	ige ction			
12	AB			0x0		R/W	Sets if THRES 0x1: Be 0x0: Al	sensed v HOLD [1 elow bove	voltage .1:0] to	e amplitu o set <u>T11</u>	de shou detectio	ıld be ab on flag o	ove/be n chann	ow the el 1.	
11:0	THRESI	HOLD [1	.1:0]	0x1A6		R/W	Sets ar require THRES	nplitude ed ampli <i>Ampli</i> HOLD [1	e requi itude i <i>itude</i> .1:0] is	red to se n volts is (V) = TI a signed	t <u>T11</u> de determ HRESH decima	etection ined by: OLD [11 I value.	flag on (: 0] × 1.	channel 66 mV	1. The

Table 32: SENSE1R register details

ADDRESS: 0x0D SENSE1R															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REP [2	2:0]		AB	THRES	HOLD	[11:0]									
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
15:13 REP [2:0] 0x0 R/W Sets the time during which the amplitude in the mapping in the sets to be above/below THRESHO flag on channel 1. 0x0:1 μs 0x1:100 μs 0x2: 500 μs 0x3: 1 ms 0x4: 2 ms 0x5: 4 ms 0x6: 8 ms 0x7: 16 ms										e amplit RESHOLE	ude of t	he senso to set <u>T</u>	ed volta 2 <u>1</u> detec	ge ction	
12	АВ			0x0		R/W	Sets if THRES 0x1: Be 0x0: At	sensed v HOLD [1 elow pove	voltage 1:0] to	e amplitu 9 set <u>T21</u>	de shou detectic	ld be ab on flag o	ove/bel n chann	ow the el 1.	
11:0	THRESH	HOLD [1	1:0]	0x000		R/W	Sets ar require THRES	nplitude ed ampli <i>Ampli</i> HOLD [1	e requii itude ir i <i>tude</i> (1:0] is	red to se n volts is (V) = TH a signed	t <u>T21</u> de determi <i>IRESH</i> (decima	etection ined by: DLD[11 I value.	flag on 6 : 0] × 1.	channel 66 mV	1. The

Table 33: SENSE1S register details

ADDRE	SS: 0x0E	E SENS	SE1S												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ABS2	SLOPE2	2 [6:0]						ABS1	SLOPE:	1 [6:0]					
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
15	ABS2			0x1		R/W	Sets if	sensed v	/oltage	slope va	lue sho	uld be a	bove/b	elow the	ē
							SLOPE	2 [6:0] to	o set <u>S2</u>	1 detect	ion flag	on char	nnel 1.		
							0x1: Be	elow							
	4:8 SLOPE2 [6:0] 0x7B B/W Sets signal slope threshold in mV/ms required to set \$21 detection														
14:8	:8 SLOPE2 [6:0] 0x7B R/W Sets signal slope threshold in mV/ms required to set <u>S21</u> detection flag on channel 1. The slope (S) in mV/ms is determined by:														ection
	flag on channel 1. The slope (S) in mV/ms is determined by:														
									S(mV	(/ms) =	SLOPI	E2[6:0]	× 2.2		
							SLOPE	2 [6:0] is	a signe	d decim	al value	2.			
7	ABS1			0X0		R/W	Sets if	sensed v	/oltage	slope va	lue sho	uld be a	bove/b	elow the	õ
							SLOPE	1 [6:0] to	o set <mark>S1</mark>	1 detect	ion flag	on char	nnel 1.		
							0x1: Be	elow							
							0x0: A	bove							
6:0	SLOPE1	L [6:0]		0x0		R/W	Sets si	gnal slop	e thres	hold in i	mV/ms	required	l to set	<u>S11</u> det	ection
							flag on	channe	l 1. The	slope (S	5) in mV	/ms is d	etermin	ed by:	
									S(mV	(/ms) =	SLOPI	E1[6:0]	× 2.2		
							SLOPE	1 [6:0] is	a signe	d decim	al value	2.			

Table 34: SENSE2 register details

ADDRE	ESS: 0x0I	F SENS	SE2												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD				WVR [2	2:0]		WVP [2:0]		AUTOR	AUTOP	S2	S1	T2	T1
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION				•			
11:9	WVR [2	2:0]		0x0		R/W	Sets w detect	aveform ion ever	in WFS	to be p s. See Ta	layed w able 16 f	hen an a ^f or more	actuator e detail.	release	ž
8:6 WVP [2:0] 0x0 R/W Sets waveform in WFS to be played when an actuator press detection event occurs. See Table 16 for more detail.															
5	AUTOF	ł		0x0		R/W	Enable SENSE detect and in (as det 0x1: El 0x0: D Piezo a If SENS If SENS If SENS	es the au 2.WVR [ion ever Table 1 tailed in nable isable actuator 5E2.T2 = 5E2.T2 = 5E2.T2 =	tomatic 2:0]) up It for ch 4) or (2 section release 0 & SEN 1 & SEN 0 & SEN 1 & SEN	wavefo on eithe annel 2) an exte 6.2.10). conditio ISE2.S2 ISE2.S2 ISE2.S2 ISE2.S2	rm star er (1) a p (conditi ernal tri en for d = 0, will = 0, will = 1, will = 1, will	t (define viezo act ons det. gger eve etectior start or start or start or start or start or	ed with tuator re ailed in ent occu n trigger n (<u>S22</u> & n <u>T22</u> n <u>S22</u> n <u>S22</u> &	elease the list l rred on ing: T22) :	Delow GPIO2

Confidential

Product Datasheet

ADDRE	SS: 0x0	= SEN	SE2												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD				WVR [2	2:0]		WVP [2	2:0]		AUTOR	AUTOP	S2	S1	T2	T1
BITS	NAME			DEFAU	LT	TYPE	DESCRI	PTION		·				-	
4	AUTOP			0x0		R/W	Enables SENSE2 event f Table detaile 0x1: En 0x0: Di Piezo a If SENS If SENS If SENS If SENS	s the au 2.WVP [or chan 13) or (d in sec able ctuator E2.T1 = E2.T1 = E2.T1 = E2.T1 =	tomatic 2:0]) up nel 2 (c 2) an ex tion 6.2 press c 0 & SEI 1 & SEI 0 & SEI 1 & SEI	c wavefo oon eithe ondition (ternal tr 2.10). condition NSE2.S1 NSE2.S1 NSE2.S1 NSE2.S1	rrm starf er (1) a p s detaild igger ev for det = 0, will = 0, will = 1, will = 1, will	t (defin- piezo ac ed in th vent occ ection t start o start o start o start o start o	ed with tuator p e list be curred o curred o rriggerin n (<u>S12</u> & n <u>S12</u> &	oress det low and n GPIO2 g: t <u>112</u>)]	ection in (as
3	S2			0x1		R/W	Enables the SEN 0x1: En 0x0: Dis	s the co NSE2S S able sable	mpariso LOPE2 [on of the [6:0] for	e channe <u>S22</u> dete	el 2 sen ection t	sed volt riggerin	age slop g.	e to
2	S1			0x0		R/W	Enables the SEN 0x1: En 0x0: Di	s the co NSE2S S Iable sable	mpariso LOPE1 [on of the [6:0] for	e channe <u>S12</u> dete	el 2 sen ection t	sed volt riggerin	age slop g.	e to
1	T2			0x0		R/W	Enables to the S 0x1: En 0x0: Di	s the co SENSE2 able sable	mpariso R THRES	on of the SHOLD [2	e channe L1:0] for	el 2 sen ⁻ <u>T22</u> de	sed volt etection	age amp triggerir	litude ng.
0	T1			0x1		R/W	Enables to the S 0x1: En 0x0: Di	s the co SENSE2I able sable	mpariso P THRES	on of the SHOLD [1	e channe L1:0] for	el 2 sen - <u>T12</u> de	sed volt etection	age amp triggerir	litude ng.

*Configuration where S2, T2, S1, T1 are all set to 0x0 may result in unexpected behaviour.

Table 35: SENSE2P register details

ADDRE	ESS: 0x10) SENSE	2P												-
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REP [2	2:0]		AB	THRES	HOLD	[11:0]									
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
needs to be above/below THRESHOLD [11:0] to set T12 de flag on channel 2. 0x0:1 μs 0x1:100 μs 0x2: 500 μs 0x3: 1 ms 0x4: 2 ms 0x5: 4 ms 0x6: 8 ms 0x7: 16 ms											ed volta <u>12</u> detec	ge ction			
12	AB			0x0		R/W	Sets if THRES 0x1: Be 0x0: Al	sensed HOLD [1 elow bove	voltage 1:0] to	e amplitu set <u>T12</u>	de shou detectic	ld be ab on flag o	ove/bel n chann	ow the el 2.	
11:0	THRES	HOLD [1	.1:0]	0x1A6		R/W	Sets ar require THRES	nplitude ed ampli <i>Ampli</i> HOLD [1	e requin itude ir i <i>tude</i> (1:0] is	red to se n volts is (V) = TH a signed	t <u>T12</u> de determi HRESH(decima	tection ned by: DLD[11 l value.	flag on (: 0] × 1.	channel 66 mV	2. The

Table 36: SENSE2R register details

ADDRE	SS: 0x11	L SENSE	2R												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REP [2	:0]		AB	THRES	HOLD	[11:0]									
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
needs to be above/below flag on channel 2. 0x0:1 μs 0x1:100 μs 0x2: 500 μs 0x3: 1 ms 0x4: 2 ms 0x5: 4 ms 0x6: 8 ms 0x7: 16 ms										which th elow THF	e amplit RESHOLI	tude of t D [11:0]	he sens to set <u>T</u>	ed volta 22 detec	ge ction
12	AB			0x0		R/W	Sets if THRES 0x1: Be 0x0: Al	sensed v HOLD [1 elow bove	voltage .1:0] to	e amplitu 9 set <u>T22</u>	de shou detectio	ıld be ab on flag o	oove/be n chann	ow the el 2.	
11:0	THRESH	HOLD [1	.1:0]	0x000		R/W	Sets ar require THRES	nplitude ed ampli <i>Ampli</i> HOLD [1	e requii itude ir <i>itude</i> (.1:0] is	red to \overline{se} n volts is (V) = TI a signed	t <u>T22</u> de determ HRESH decima	etection ined by: OLD [11 I value.	flag on 6 : 0] × 1.	channel 66 mV	2. The

Table 37: SENSE2S register details

ADDRE	SS: 0x12	2 SENS	SE2S												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ABS2	SLOPE2	2 [6:0]						ABS1	SLOPE:	1 [6:0]					
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
15	ABS2			0x1		R/W	Sets if	sensed v	/oltage	slope va	lue sho	uld be a	bove/b	elow the	9
							SLOPE	2 [6:0] to	o set <u>S2</u>	2 detect	ion flag	on char	nnel 2.		
							0x1: Be	elow							
							0x0: Al	oove							
14:8	SLOPE2	2 [6:0]		0x7B		R/W	Signal	slope th	reshold	in mV/r	ns requ	ired to s	et <u>S22</u> (detectio	n flag
	on channel 2. The slope (S) in mV/ms is determined by:														
									S(mV	'/ms) =	= SLOP	E2[6:0]	× 2.2		
							SLOPE	2 [6:0] is	a signe	d decim	al value	2.			
7	ABS1			0X0		R/W	Sets if	sensed v	voltage :	slope va	lue sho	uld be a	bove/b	elow the	0
							SLOPE:	1 [6:0] to	o set <u>S1</u> 2	2 detect	ion flag	on char	nnel 2.		
							0x1: Be	elow							
							0x0: Al	oove							
6:0	SLOPE1	L [6:0]		0x0		R/W	Sets sig	gnal slop	be thres	hold in i	mV/ms	required	to set	<u>S12</u> det	ection
							flag on	channe	l 2. The	slope (S	5) in mV	/ms is d	etermir	ed by:	
									S(mV	(/ms) =	SLOPI	E1[6:0]	× 2.2		
							SLOPE:	1 [6:0] is	a signe	d decim	al value	2.			

Table 38: SENSE3 register details

ADDRE	ESS: 0x1	3 SEN	SE3												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD				WVR [2:0]		WVP [2:0]		AUTOR	AUTOP	S2	S1	T2	T1
BITS	NAME			DEFAU	JLT	TYPE	DESCR			•		•			
11:9	WVR [2:0]		0x0		R/W	Sets w detect	aveform ion ever	in WFS nt occurs	to be p s. See Ta	layed w able 16 f	hen an a for more	actuator e detail.	release	ĩ
8:6	WVP [2	2:0]		0x0		R/W	Sets w detect	aveform ion ever	in WFS nt occurs	to be p s. See Ta	layed w able 16 f	hen an a for more	actuator e detail.	r press	
5	AUTOF	3		0x0		R/W	Enable SENSE detect and in (as det 0x1: El 0x0: D Piezo a If SENS If SENS If SENS	es the au 3.WVR [ion ever Table 1 tailed in nable isable actuator SE3.T2 = SE3.T2 = SE3.T2 =	tomatic 2:0]) up It for ch 4) or (2 section release 0 & SEN 1 & SEN 0 & SEN 1 & SEN	wavefo on eithe annel 3) an exte 6.2.10). conditio ISE3.S2 ISE3.S2 ISE3.S2 ISE3.S2	rm star er (1) a p (conditi ernal tri en for d = 0, will = 0, will = 1, will = 1, will	t (define piezo act ons deta gger eve etection start or start or start or start or	ed with cuator re ailed in $\frac{1}{2}$ ent occu $\frac{523}{2}$ $\frac{523}{2}$ $\frac{523}{2}$	elease the list l irred on ing: T23) 1	Delow GPIO3

Confidential

Product Datasheet

ADDRE	SS: 0x13	B SENS	SE3												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD				WVR [2	2:0]		WVP [2	2:0]		AUTOR	AUTOP	S2	S1	T2	T1
BITS	NAME			DEFAU	LT	TYPE	DESCRI	PTION							
4	AUTOP			0x0		R/W	Enable SENSE3 event f Table detaile 0x1: En 0x0: Di Piezo a If SENS If SENS If SENS	s the au 3.WVP [or chan 13) or (d in sec hable sable ctuator E3.T1 = E3.T1 = E3.T1 =	tomatic 2:0]) up nel 3 (ca 2) an ex tion 6.2 press ca 0 & SEN 1 & SEN 0 & SEN 1 & SEN	wavefo on eithe ondition ternal tr .10). ondition VSE3.S1 VSE3.S1 VSE3.S1	rm start r (1) a p s detaild igger ev for det = 0, will = 0, will = 1, will = 1, will	t (define iezo act ed in the rent occ ection t start or start or start or start or	ed with cuator p e list be urred o riggerin (513 & 0) 513 & 0	ress det low and n GPIO3 g: . <u>T13</u>) <u>1</u> T13	ection in (as
3	S2			0x1		R/W	Enable the SEN 0x1: En 0x0: Di	s the co NSEOS S Iable sable	mpariso LOPE2 [on of the 6:0] for	e channe <u>S23</u> dete	el 3 sens ection tr	ed volta riggerin	age slop g.	e to
2	S1			0x0		R/W	Enable the SEN 0x1: En 0x0: Di	s the co NSE3S S Iable sable	mpariso LOPE1 [on of the 6:0] for	e channe <u>S13</u> dete	el 3 sens ection tr	ed volta riggerin	age slop g.	e to
1	Т2			0x0		R/W	Enable to the S 0x1: En 0x0: Di	s the co SENSE3I able sable	mpariso R THRES	on of the HOLD [2	e channe L1:0] for	el 3 sens <u>T23</u> de	ed volta	age amp triggerir	litude ng.
0	Τ1			0x1		R/W	Enable to the S 0x1: En 0x0: Di	s the co SENSE3I able sable	mparisc P THRES	on of the HOLD [1	e channe [1:0] for	el 3 sens <u>T13</u> de	ed volta tection	age amp triggerir	litude ıg.

*Configuration where S2, T2, S1, T1 are all set to 0x0 may result in unexpected behaviour.

Table 39: SENSE3P register details

ADDRE	ESS: 0x14	1 SENSE	3P	-											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REP [2	2:0]		AB	THRES	HOLD	[11:0]									
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
needs to be above/below THRESHOLD [11:0] to set T13 de flag on channel 3. 0x0:1 μs 0x1:100 μs 0x2: 500 μs 0x3: 1 ms 0x4: 2 ms 0x5: 4 ms 0x6: 8 ms 0x7: 16 ms											ed volta <u>13</u> deteo	ge ction			
12	AB			0x0		R/W	Sets if THRES 0x1: Be 0x0: Al	sensed HOLD [1 elow bove	voltage .1:0] to	e amplitu set <u>T13</u>	de shou detectic	lld be ab on flag o	ove/be n chann	low the lel 3.	
11:0	THRESH	HOLD [1	.1:0]	0x1A6		R/W	Sets ar require THRES	nplitude ed ampli <i>Ampli</i> HOLD [1	e requir itude ir <i>itude</i> (.1:0] is	red to se n volts is (V) = TH a signed	t <u>T13</u> de determi HRESH(decima	etection ined by: DLD[11 I value.	flag on (: 0] × 1.	channel .66 mV	3. The

Table 40: SENSE3R register details

ADDRE	SS: 0x15	5 SENSE	3R												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REP [2	2:0]		AB	THRES	HOLD	[11:0]									
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
15:13	13.13 Itel [2.0] 0x0 Ity W 0x0 itel (2.0) needs flag of 0x0:1 0x0:1 0x1:10 0x2:5 0x3:1 0x4: 2 0x5:4 0x6: 8 0x7:1									which th elow THF	e amplit RESHOLI	tude of t D [11:0]	he sens to set <u>T</u>	ed volta 23 detec	ge ction
12	АВ			0x0		R/W	Sets if THRES 0x1: Be 0x0: Al	sensed v HOLD [1 elow bove	voltage .1:0] to	e amplitu 9 set <u>T23</u>	de shou detectio	ıld be ab on flag o	oove/be n chann	ow the el 3.	
11:0	THRESH	HOLD [1	.1:0]	0x000		R/W	Sets ar require THRES	nplitude ed ampli <i>Ampli</i> HOLD [1	e requii itude ir <i>itude</i> (.1:0] is	red to se n volts is (V) = TI a signed	t <u>T23</u> de determ HRESH decima	etection ined by: OLD [11 I value.	flag on 6 : 0] × 1.	channel 66 mV	3. The

Table 41: SENSE3S register details

ADDRE	ESS: 0x16	5 SENS	SE3S												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ABS2	SLOPE2	2 [6:0]						ABS1	SLOPE	1 [6:0]					
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
15	ABS2			0x1		R/W	Sets if SLOPE	sensed v 2 [6:0] to Plow	voltage 5 set <u>S2</u>	slope va <u>3</u> detect	ilue sho ion flag	uld be a on char	bove/bonnel 3.	elow the	9
							0x0: A	bove							
14:8	SLOPE2	2 [6:0]		0x7B		R/W	Sets sig flag on SLOPE	gnal slop channe 2 [6:0] is	e thres I 3. The S (ml a signe	hold in i slope (S V/ms) = ed decim	mV/ms 5) is dete = <i>SLOP</i> aal value	requirec ermined E2[6: 0] e.	l to set by: × 2.2	<u>S23</u> det(ection
7	ABS1			0X0		R/W	Sets if SLOPE 0x1: Be 0x0: Al	sensed v 1 [6:0] to elow bove	voltage o set <u>S1</u>	slope va <u>3</u> detect	ilue sho ion flag	uld be a on char	bove/bo nnel 3.	elow the	2
6:0	Ox0: Above $Ox0: Above$ $Ox0: SLOPE1 [6:0]$ $Ox0$ R/W Sets signal slope threshold in mV/ms required to set S13 detection flag on channel 3. The slope (S) is determined by: $S(mV/ms) = SLOPE1[6:0] \times 2.2$													ection	
							SLOPE	1 [6:0] is	a signe	ed decim	ial value	2.			

Table 42: SENSESTATUS register details

ADDRE	SS: 0x1	7 SENS	SESTATU	JS											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
S23	S13	T23	T13	S22	S12	T22	T12	S21	S11	T21	T11	S20	S10	T20	T10
BITS	NAME			DEFAU	LT	TYPE	DESCR	PTION							
15	S23			0x0		R	Compa 0x1: Th 0x0: Th	rator sta reshold reshold	atus for met not me	SLOPE2	[6:0] o	f channe	el 3.		
14	S13			0x0		R	Compa 0x1: Th 0x0: Th	rator sta reshold reshold	atus for met not me	SLOPE1	[6:0] of	f channe	el 3.		
13 T23 0x0 R Comparator status for the release threshold 0x1: Threshold met 0x0: Threshold not met 13 T13 0x0 R Comparator status for the process threshold 0x1: Threshold met 0x0: Threshold not met												eshold c	of chann	el 3.	
12	T13			0x0		R	Compa 0x1: Th 0x0: Th	rator sta reshold reshold	atus for met not me	the pre	ss thres	hold of	channel	3.	
11	S22			0x0		R	Compa 0x1: Th 0x0: Th	rator sta reshold reshold	atus for met not me	SLOPE2	[6:0] o	f channe	el 2.		
10 S12 0x0 R Comparator status for SLOPE1 [6:0] of channel 2. 0x1: Threshold met 0x0: Threshold not met															
9 T22 0x0 R Comparator status for the release t 0x1: Threshold met 0x0: Threshold not met												eshold c	of chann	el 2.	
8	T12			0x0		R	Compa 0x1: Th	rator stan	atus for met	the pre	ss thres	hold of	channel	2.	

Product Datasheet

ADDR	ESS: 0x1	7 SEN	SESTAT	US											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
S23	S13	T23	T13	S22	S12	T22	T12	S21	S11	T21	T11	S20	S10	T20	T10
BITS	NAME			DEFAU	ILT	TYPE	DESCR	IPTION							
							0x0: Tł	nreshold	l not m	et					
7	S21			0x0		R	Compa	arator st	atus fo	r SLOPE2	2 [6:0] o	f channe	el 1.		
							0x1: T	nreshold	l met						
							0x0: Tl	nreshold	l not m	et					
6	S11			0x0		R	Compa	arator st	atus fo	r SLOPE1	[6:0] o	f channe	el 1.		
							0x1: Tł	nreshold	l met						
							0x0: Tl	nreshold	l not m	et					
5	T21			0x0		R	Compa	arator st	atus fo	r the rele	ease thr	eshold o	of chanr	nel 1.	
							0x1: Tl	nreshold	l met						
							0x0: Tl	nreshold	l not m	et					
4	T11			0x0		R	Compa	arator st	atus fo	r the pre	ss thres	shold of	channe	1.	
							0x1: TI	hreshold	l met						
	600					-	0x0: 11	hreshold	i not m	et		<u> </u>			
3	\$20			0x0		R	Compa	arator st	atus fo	r SLOPE2	2 [6:0] 0	t channe	el 0.		
							0x1: 11	nreshold	l met	~+					
2	610			00			Ox0: II	iresnoid	not m		[(0] -	fahawa			
2	510			UxU		к		arator st	atus io	r SLOPE1	[6:0] 0	r channe	ei 0.		
								reshold	l not m	ot					
1	T20			0×0		R	Compa	arator st	atus fo	r the rele	ase thr	eshold a	fchanr	م ام	
1	120			0.0		ľ,		nreshold	l met		case thi	esnoia		10.	
							0x0: T	reshold	l not m	et					
0	T10			0x0		R	Compa	arator st	atus fo	r the pre	ss three	hold of	channe	10.	
	1.10			5/10		` `	0x1: T	nreshold	l met						
							0x0: TI	nreshold	l not m	et					

Table 43: SENSEDATA0 register details

ADDRE	SS: 0x18	B SENS	SEDATA	C											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SENSE	NSEDATA [15:0]														
BITS	ITS NAME DEFAULT TYPE DESCRIPTION														
15:0	SENSEI	DATA [1	5:0]	0x0		R	Signed channe Valid ra	represe el 0. The <i>Ampl</i> ange is:	ntation amplitu <i>itude</i> (-16 384-	of the sude (V) V) = S <= SENS	ensing o in volts i ENSED EDATA	data (ac s deterr A <i>TA</i> [15 [15:0] <	cumulat nined b : 0] × 2 16 383.	:or) on y: 20 μ <i>V</i>	

Table 44: SENSEDATA1 register details

ADDRE	SS: 0x19	SENS	SEDATA1	L											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SENSE	ENSEDATA [15:0]														
BITS	ITS NAME DEFAULT TYPE DESCRIPTION														
15:0	SENSEI	DATA [1	5:0]	0x0		R	Signed channe Valid ra	represe el 1. The <i>Ampl</i> ange is: -	ntation amplitu <i>itude</i> (` -16 384<	of the s ide (V) i V) = SI <= SENS	ensing o n volts i ENSED EDATA	data (aco s deterr 4 <i>TA</i> [15 [15:0] <	cumulat nined b : 0] × 2 16 383.	or) on y: 20 μ <i>V</i>	

Table 45: SENSEDATA2 register details

ADDRE	SS: 0x1/	A SENS	SEDATA	2											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SENSE	ENSEDATA [15:0]														
BITS	ITS NAME DEFAULT TYPE DESCRIPTION 5:0 SENSEDATA [15:0] 0x0 P Signed representation of the sensing data (accumulator) on														
15:0	SENSEI	DATA [1	5:0]	0x0		R	Signed channe Valid ra	represe l 2. The <i>Ampl</i> ange is:	ntation amplitu <i>itude</i> (` -16 384•	of the s ide (V) i V) = SI <= SENS	ensing o n volts i E <i>NSED</i> EDATA	lata (aco s deterr 4 <i>TA</i> [15 [15:0] <	cumulat nined b : 0] × 2 16 383.	or) on y: 20 µ <i>V</i>	

Table 46: SENSEDATA3 register details

ADDRE	SS: 0x1	B SENS	SEDATA	3											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SENSEDATA [15:0]															
BITS	TS NAME DEFAULT TYPE DESCRIPTION														
15:0	SENSE	DATA [1	5:0]	0x0		R	Signec chann	l represe el 3. The <i>Amp</i>	entatior e amplit <i>litude</i>	the of the stude (V) $(V) = S_{1}$	sensing in volts ENSED	data (ac is deteri <i>ATA</i> [15	cumulat mined b 5: 0] × 2	tor) on y: 20 μV	
							Valid r	ange is:	-16 384	4<= SENS	SEDATA	[15:0] <	16 383		

Table 47: KPA register details

ADDRE	SS: 0x20) KPA													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD				SB [1:0]	FSWMA	X [1:0]	KPA [7	:0]			•			
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
11:10	SB [1:0]		0x3		R/W	Sets bo 0x0: 35 0x1: 44 0x2: 53 0x3: 62 Default	oost con 5 ns 1 ns 3 ns 2 ns t value s	verter	blanking work for	time.	pplicatic	ons		
9:8	FSWM	AX [1:0]		0x0		R/W	Sets bo 0x0: 1 0x1: 83 0x2: 66 0x3: 50	oost con MHz 33 kHz 56 kHz 00 kHz	verter	maximui	n switc	hing free	quency.		
7:0	V:0KPA [7:0]Ox10R/WSets the value of the proportional gain (KPc) used in the integrate PI controller, which is calculated by: $KPc = KP[10:0] + KPA[7:0] \times Amplitude$ Where Amplitude is REFERENCE [11:0] decimal value.												grated		

Table 48: KP_KI register details

ADDRE	SS: 0x21	L KP_k	a												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD	KIBASE	[3:0]			KP [10:	0]									
BITS	NAME			DEFAU	LT	TYPE	DESCR	PTION							
14:11KIBASE [3:0]0x3R/WDetermines the pole location (fpole) of the integrated PI controller The pole location (fpole) in kHz is determined by: $f_{pole} = \frac{1024}{2^{KIBASE}}$													oller.		
10:0	KP [10:	0]		0x080		R/W	Sets th propor by:	e physic tional g	al value ${\rm ain.}$ The Kp_p	e (Kp _{Physic} physica physical ⁼	(x_{al}) of th I value ($= \frac{KP[1]}{KP[1]}$	e integra Kp _{Physical} $0:0] \times 2$ R_{sense}	ated PI (/) in A/V 2 ⁻¹⁴	controlle is deter	er rmined

Table 49: DEADTIME register details

ADDRE	SS: 0x22	2 DEA	DTIME												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AD_ SENSE	RSVD			DHS [6	:0]						DLS [4:	0]			
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION							
15	AD_SEI	NSE		0x1		R/W	Enable enable provid 0x1 En 0x0 Dis	es segme ed, all se e a signa able sable	ents of ti nsed vo al propo	he sense Itage se rtional t	ed signa gments to the fo	l to stitc are accu rce on t	h togetl Imulate he actu	her. Wh d in tim ator.	en e to
11:5	DHS [6	0]		0x23		R/W	Sets th (HS) sv DHS [6 Where the pa	e delay vitch tur :0] is de c.sw=220 rasitic ca	betwee ns on. termine DHS 0 pF is tl apacitan	In Low-S and by: $S = \frac{2\pi}{2\pi}$ The typic lice of L ₁ ted for	ide (LS) $\sqrt{L_1 \times (d)}$ 4×1.1 al IC cap and PCE	switch t $C_{sw} + C_{i}$ $\times 10^{-9}$ vacitance 3 layout	urns off _{par}) e of pin	and Hig	gh-Side C _{par} is
4:0	DLS [4:	0]		0x0A		R/W	Sets th Side (L High-S The de can be	e delay S) switcl ide (HS) fault val adjuste	betwee n turns o switch t lue shou d for op	n the Hi on and L turns on Ild work	gh-Side Low-Side for most on.	(HS) swi e (LS) swi st applic	itch turr itch tur ations,	ns off ar ns off ai but DLS	nd Low- nd [4:0]

Table 50: PARCAP register details

ADDRE	SS: 0x23	B PARC	CAP												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PARCA	P [7:0]							I_ON_S	CALE [7	' :0]					
BITS	NAME			DEFAU	LT	TYPE	DESCRI	PTION							
15:8	PARCA	P [7:0]		0x0E		R/W	Interna	l param	eter det	termine	d by:				
							Where	PARC. Csw=220	<i>AP</i> [7:0) pF is th	$] = \frac{\sqrt{C}}{1}$	$\frac{W_{pw} + C_{pw}}{L_1}$ $\frac{1}{2^{-11}}$ al IC cap	$\frac{ar}{m} \times R_{se}$	$e_{nse} imes F$ e of pin	B _{ratio} SW, C _{pa}	r is the
							parasit	ic capac	itance o	of L ₁ and	l PCB lay	out and	FBratio =	= 19.	
7:0	I_ON_S	SCALE [7	':0]	0x33		R/W	Minimu	um curre	ent requ	uired to	turn ON	I HS Swi	tch (I _{ON}	scale), v	which is
							determ	ined by	:						
$I_ON_SCALE [7:0] = round \left(\frac{Latency}{L_1 \times 2^{-12}} \times R_{sense} \times FB_{ratio}\right)$													atio)		
							Where	Latency	[,] = 50 ns	and FB	_{ratio} = 19).			

Table 51: SUP_RISE register details

ADDRI	ESS: 0x24	4 SUP	_RISE												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD			CP5	LP	VBUS	[4:0]				TI_RISE	E [5:0]				
BITS	NAME			DEFAL	JLT	TYPE	DESC	RIPTION							
12	CP5			0X1		R/W	Enab	les intern	al 5 V d	charge pu	ımp.				
							0x1:	Enable							
							0x0:	Disable							
							The	CP5 should	d be di	sabled or	nly if the	e BOSO6	514 is su	upplied	at 5 V.
11	LP			0X1		R/W	Enab	les low se	nsing	power wł	nen sen	sing is e	nabled	(bits	
							SENS	ECONFIG	<u>[3:0]</u>).						
							0x1:	Enable lov	<i>w</i> pow	er sensing	g				
							0x0:	Disable lo	w pow	er sensin	g				
10:6	VBUS [4:0]		0X0E		R/W	Digit	al represe	ntatio	n of the s	upply v	oltage (V _{вUs}) at	pin VB	US, as
							desc	ribed by:							
										VBUS [4	l: 0] =	$\frac{V_{BUS}}{0.0166}$ 16	<u>5)</u>		
							For \	/ _{BUS} = 3 V	wri	te 0x0B.					
							For \	/ _{BUS} = 3.6 V	' wri	te 0x0E.					
							For \	/ _{BUS} = 5.0 V	′ wri	te 0x13					
5:0	TI_RISE	E [5:0]		0x0F		R/W	Sets	the propo	rtiona	l gain for	the offs	set, dete	ermined	d by:	
								Т	'I_RISE	E [5: 0] =	$\frac{T_{CLK} \times T_{CLK}}{L}$	31.25	$\times \frac{FB_{ra}}{R_{Sen}}$	tio se	
							Whe	re <i>T_{CLK}</i> =70) ns an	d FB _{ratio} =	19.				

Table 52: TRIM register details

ADDRE	SS: 0x25	5 TRIM	1												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TRIMR	W [1:0]	RSVD				TRIM_	OSC [6:0]					TRIM	REG [2	:0]
BITS	NAME			DEFAU	LT	TYPE	DESCRI	PTION							
15:14	TRIMR	W [1:0]		0x0		R/W	Trim cc oscillat voltage vary fro TRIMRV operati 0x0: De Tri 0x1: Re tra for 0x2: Tri for 0x3: W	ontrol b or frequ (TRIM om chip W [1:0] W [1:0] w [1:0] on. fault bo m Block sets the nsfers readin ansfers readin rites <u>TR</u>	its allov Jency (' _REG [2 -to-chij bits are ehaviou (at pov e Trim B G (wait Trim B g (wait IM OS	wing the TRIM_OS 2:0]), see p. More e automa ur where wer-up Block wit pock data for 1 ms lock data for 1 ms <u>C [6:0]</u> &	adjustr SC [6:0] Figure detail is atically Hardw h the H to <u>TRIN</u> before to <u>TRIM</u>	nent of t) and 1.8 2 36. Har availabl reset to 0 are fuses ardware <u>A OSC [6</u> reading <u>REG [2:0</u>	he inte V inter dware 1 e in sec Dx0 afte s are lat Fuses 5:0] & <u>T</u> 6:0] & <u>1</u> 1 to Trii	rnal clo rnal reg fuses va ction 6.2 er each cched to and the <u>RIM_RE</u> <u>FRIM_R</u>	ck ulator ilues 2.4. o the n <u>:G [2:0]</u> EG [2:0]
13:10	RSVD						Reserve	ed.							
9:3	TRIM_0	DSC [6:0)]	0x00		R/W	Oscillat 120 kH Note th circuit 0x3F: N 0x40: N	or trim z. nat char malfuno 1aximur 1inimur	ming bi nging th ction ar m frequ m frequ	its in two ne intern nd is not uency uency	o's com al oscill recomn	plement. ator frec nended f	Step s Juency or norr	ize is ar may inc nal ope	ound luce ration.
2:0	TRIM_F	REG [2:0)]	0x0		R/W	1.8 V R around Note th amplitu 0x3: M 0x4: M	egulato 22 mV nat char ude and aximum inimum	r trimm nging th is not voltag voltag	ning bits ne regula recomm ge e	in two' tor volt ended f	s comple age will or norm	ement. S affect v al opera	Step siz vavefor ation.	e is m

Figure 36: Trim Control Block Diagram

Table 53: CHIPID register details

ADDRE	SS: 0x26	5 CHIP	DID												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CHIPID															
BITS	ITS NAME DEFAULT TYPE DESCRIPTION														
15:0	CHIPID	[15:0]		0x0614	Ļ	R	The BC)SO614 i	dentifica	ation.					
							CHIPID	: 0x0614	4.						
							Use the	e I3C chi	ip ID (<mark>GE</mark>	<u>ETPID</u>) if	commu	inicating	g throug	h I3C. T	'he
							returne	ed code	will be (0x0684	on the l	3C inter	face.		

Table 54: VFEEDBACK register details

ADDRE	ESS: 0x28	8 VFEE	DBACK												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD		CH3	CH2	CH1	CH0	VFEED	BACK [S	:0]	•			•	•		•
BITS	NAME	•		DEFAU	LT	TYPE	DESCR	IPTION							
13	CH3			0x0		R	State o 0x1: C 0x0: N	of outpu hannel d ot drive	t chanr Iriven n	nel 3.					
12	CH2			0x0		R	State 0 0x1: C 0x0: N	of outpu hannel d ot drive	t chanr Iriven n	nel 2.					
11	CH1			0x0		R	State o 0x1: C 0x0: N	of outpu hannel d ot drive	t chanr lriven n	nel 1.					
10	CH0			0x0		R	State o 0x1: C 0x0: N	of outpu hannel d ot drive	t chanr lriven n	nel 0.					
9:0	VFEED	BACK [9	:0]	0x000		R	Voltag deterr	e measu nined by	ired at 7: VFEEL	HV pin u DBACK [sed to c [9:0] =	drive pie $rac{V_{HV} imes (}{V_{ref} imes }$	zo loads $\frac{1}{2^{10}-1}$ $\overline{FB_{ratio}}$	s, which)	is
							Where feedba	e Vref = ack ratio	3.6 V i and <i>V</i> ⊦	s the AD _{IV} is the v	C input /oltage	range <i>, F</i> at HV pi	<i>Bratio</i> n.	= 19 is 1	the

Table 55: FIFO_STATE

ADDRE	SS: 0x29	9 FIFO	_STATE															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
RSVD			ERROR	FULL	EMPTY	FIFO_S	PACE [9	:0]										
BITS	NAME			DEFAU	LT	TYPE	DESCRI	PTION										
12	ERROR			0x0		R	Indicat	es if one	e of the	followi	ng erroi	rs occurr	ed: <u>OV</u>	<u>/, OVT</u> ,	UVLO or			
							<u>SC</u> .											
							0x1: Ar	n interna	al error	occurre	d							
							0x0: No	o error										
11	FULL			0x0		R	Indicat	es whet	her the	FIFO is	full.							
							0x1: Fu											
10				0.1			0x0: No	ot full				<u></u>						
10	EMPTY			0x1		In Direct mode(<u>RAM</u> bits set to 0x0), indicates when new data is needed:												
						is needed: 0: New data needed												
							0: Nev	v data r	needeo	1								
							1: Wai	t befor	e send	ing nev	v data							
							In FIFC) mode	(RAM	bits set	t to 0x1	L), indic	ates wl	nen FIF	O is			
							empty	:										
							0: FIFC) is emp	oty									
							1: FIFC) is not	empty	/								
							In RAN	/I Synth	iesis or	RAM	laybac	k mode	(RAM	bits se	t to 0x2			
							or 0x3), indic	ates w	hen the	, haptio	c wavefo	orm ha	s finisł	ned			
							playing	g:			•							
				0: Waveform done														
							1: Way	veform	is not	done								
9:0	FIFO_S	PACE [9	:0]	0x00		R	Space a	available	e in FIF() for ne	w data.							
							Return	s 0x000	when e	either Fl	JLL = 1 (or EMPT	Y = 1.					

Table 56: AUTO_STATE register details

ADDRE	DDRESS: 0x2A_AUTO_STATE																		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
RSVD				PRESS_	RELEAS	E [3:0]		RQS_	WAVE	[2:0]		PLAY_0	CHANNE	LS [3:0]					
								PLAY											
BITS	NAME			DEFAU	LT	TYPE	DESCR	IPTION											
11 PRESS_RELEASE[3] 0x0 R State of sense channel 3.																			
	Ox1: Actuator is pressed																		
							0x0: Actuator is released												
10	PRESS	RELEAS	E[2]	0x0		R	State o	fsense	channel	2.									
							0x1: Ac	tuator i	s presse	ed									
							0x0: Ac	tuator i	s releas	ed									
9	PRESS	RELEAS	E[1]	0x0		R	State o	fsense	channel	1.									
							0x1: Ac	tuator i	s presse	ed									
						0x0: Actuator is released													
8	8 PRESS_RELEASE[0] 0x0 R State of sense channel 0.																		
0x1: Actuator is pressed																			
	0x0: Actuator is released																		

Product Datasheet

ADDRE	DDRESS: 0x2A_AUTO_STATE														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD				PRESS_	RELEAS	E [3:0]		RQS_ PLAY	WAVE	[2:0]		PLAY_(CHANNE	ELS [3:0]	
BITS NAME DEFAULT TYPE DESCRIPTION															
7	RQS_PLAY R Indicates whether an Automatic Haptic Playback (see section 6.8.2) has been requested on any channel. 0x1: Automatic Haptic Playback triggered 0x0: No Automatic Haptic Playback triggered												6.8.2)		
6:4	WAVE	[2:0]		0x0		R	Wavefo	orm ID o	of the wa	ave beir	ng playe	d.			
3:0	PLAY_ CHANN	IELS [3:0	0x0 R State of the four channels during automatic play. S [3:0] 0x1: Channel driven 0x0: Not driven												

Table 57: RAM DATA register details

ADDRESS: 0x2B RAM_DATA															
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
RAM_DATA															
BITS	BITS NAME DEFAULT TYPE DESCRIPTION														
15:0	RAM_[DATA		0x0		R	Data p	oresent	in RAN	Л. To be	used in	conjun	ction wi	th the	
							FULL	RAM F	<u>Read</u> W	/FS com	mand.				

Table 58: SENSE_OFFSET register details

ADDRE	SS: 0x20	C SENS	SE_OFFS	ET											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD SENSE_OFFSET [8:0]															
BITS	BITS NAME DEFAULT TYPE DESCRIPTION														
8:0	SENSE	OFFSET	[8:0]			R	Signed	represe	entatior	n of the	sense f	eedbac	k path c	offset. U	se this
value to compensate value from SENSERAWx.															

6.10 WFS Command Interpreter

The BOS0614 includes a Waveform Synthesizer (WFS) and a 2 kB on-chip 1024×16 RAM that enable haptic waveform generation using the RAM Playback Mode (bits <u>RAM [1:0]</u> set to 0x2) and RAM Synthesis Mode (bits <u>RAM [1:0]</u> set to 0x3) accessible through <u>REFERENCE</u> register (see section 6.6 and 6.7 for more detail). RAM is programmed using the WFS Command Interpreter and is used to store both RAM Playback and RAM Synthesis configuration data. WFS commands are summarized in Table 59, where word 0 is the command and the following words are the command payload.

Table 59 WFS Commands List

COMMAND	WORD	15	14	13	12	11 10 9 8 7 6 5 4 3 2 1 0 COMMAND [15:0] = 0x0001											
RAM ACCESS	0						(СОММ	AND [1	.5:0] =	0x0001	<u>l</u>					
	1						R/W				A	ADDRE	SS [9:0]			
	2				DATA1	[15:0]	: requi	red wh	en R/V	V bit is	set to	0x0 fo	r write	access	;		
	3				DATA2	[15:0]	: requi	red wh	en R/V	V bit is	set to	0x0 fo	r write	access	;		
	4				DATA3	[15:0]	: requi	red wh	en R/V	V bit is	set to	0x0 fo	r write	access	;		
SEQUENCER	0						(СОММ	AND [1	.5:0] =	<u>0x0002</u>	2					
	1								١	WAVE /	ADDRE	SS [9:0] (WA\	/EFORI	VI_ID 0)	
	2								١	WAVE A	ADDRE	SS [9:0] (WA\	/EFORI	M_ID 1)	
	3								١	WAVE /	ADDRE	SS [9:0] (WA\	/EFORI	VI_ID 2)	
	15		WAVE ADDRESS [9:0] (WAVEFORM_ID 14)														
RAM SYNTHESIS	0		COMMAND [15:0] = <u>0x0012</u>														
	1	END V	/AVEFOF	M_ID [1	15:12]	START	WAVEF	ORM_ID	[11:8]								
RAM PLAYBACK	0						(СОММ	AND [1	.5:0] =	0x0013	3					
	1										STA	rt add	DRESS	9:0]			
	2										EN	D ADD	RESS [9	9:0]			
BURST RAM WRITE	0						(СОММ	AND [1	.5:0] =	0x0014	1					
	1										STA	RT ADE	DRESS	9:0]			
	2										DA	TA CO	UNT [9	:0]			
	3								DATA1	[15:0]							
	2+n	DATAn (n = DATA COUNT [9:0])															
FULL RAM READ	0	COMMAND [15:0] = <u>0x0015</u>															
FULL RAM READ	0						(COMM	AND [1	15:0] =	OxFF15	5					
BREAK																	

Figure 37 and Figure 38 presents two different I²C communication sequence examples using either a single communication transaction for each WFS command or a single communication transaction to use several WFS commands. The first word of each WFS command is the command identifier. The number of following words to send depends on the command used.

Confidential

٦

Code Description / Command 1 0x2C I ² C address	
Code Description / Command 1 0x2C I ² C address	
0x2C I ² C address	
0x00 Select REFERENCE register to use a WFS comman	ind
0x0000 WFS command 1	
0x0000 Expected word for command 1	
Transaction 2	
Code Description / Command 2	
0x2C I ² C address	
0x00 Select REFERENCE register to use a WFS comman	Ind
0x0000 WFS command 2	
0x0000 Expected word for command 2	
Transaction 3	
Code Description / Command 3	
0x2C I ² C address	
0x00 Select REFERENCE register to use a WFS commar	Ind
0x0000 WFS command 3	
0x0000 Expected word for command 3	

Figure 37: Generic I²C communication sequence example to use a WFS command with a transaction

Transaction 1	
Code	Description / Command 1
0x2C	I ² C address
0x00	Select REFERENCE register to use WFS commands
0x0000	WFS command 1
0x0000	Expected word for command 1
Code	Description / Command 2
Coue	Description / Command 2
0x0000	WFS command 2
0x0000	Expected word for command 2
Code	Description / Command 3
0x0000	WFS command 3
0x0000	Expected word for command 3

Figure 38: Generic I^2C communication sequence example to use several WFS commands with a single transaction

6.10.1 RAM ACCESS

Table 60: RAM ACCESS details COMMAND: 0x0001 RAM ACCESS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 COMMAND [15:0] = 0x0012 NOT USED: 0x00 W/R ADDRESS [9:0] DATA1 [15:0]: required when R/W bit is set to 0x0 for write access DATA2 [15:0]: required when R/W bit is set to 0x0 for write access DATA3 [15:0]: required when R/W bit is set to 0x0 for write access TYPE DESCRIPTION BITS NAME 10 R/W W 0: RAM Write Enable 1: RAM Read Enable Write/read start address within the RAM 9:0 ADDRESS W The RAM ACCESS command is used to do the following: In RAM Synthesis mode (RAM [1:0] bits are set to 0x3), program a WAVE or SLICE block to the RAM with the ٠ following sequence (as described in Figure 39): 1. Set bits RAM [1:0] to 0x3 to select RAM Synthesis Mode 2. Write 0x0001 to the <u>REFERENCE</u> register to use the RAM ACCESS command 3. Write the following to the <u>REFERENCE</u> register: R/W bit set to 0x0. ADDRESS [9:0] bits set to the RAM start address. 4. Write the three words of either a WAVE or SLICE block to the REFERENCE register to store in RAM. See section 6.7.1 for details on the content of these words. The RAM address is automatically incremented between each word. In either RAM Synthesis or RAM Playback (RAM [1:0] bits are set to either 0x2 or 0x3), read a RAM location with • the following sequence (as described in Figure 40): 1. Set bits RAM [1:0] to 0x3 to select RAM Synthesis Mode 2. Set bits <u>BC</u> to 0x2B to select <u>RAM_DATA</u> register reading. 3. Write 0x0001 to <u>REFERENCE</u> register to use the RAM ACCESS command. 4. Write the following to the <u>REFERENCE</u> register: R/W bit set to 0x1. • ADDRESS [9:0] bits set to the RAM address to read. 5. Read 2 bytes.

Confidential

Transaction 1	: Set RAM Synthesis Mode
Code	Description
0x2C+ W	I ² C address, write access
0x05	Select CONFIG register
0x2697	Set RAM Synthesis Mode
Transaction 2	: Use RAM ACCESS Command
Code	Description
0x2C+ W	I ² C address
0x00	Select REFERENCE register to access to WFS Register
0x0001	WFS command : RAM ACCESS
0x0063	Set RAM start address 0x063 for write access
0x0100	DATA 1
0x0102	DATA 2
0x000E	DATA 3

Figure 39: I²C communication sequence for RAM write using RAM ACCESS command

Transaction 1	: Set RAM Synthesis Mode
Code	Description
0x2C+ W	I ² C address, write access
0x05	Select CONFIG register
0x2697	Set RAM Synthesis Mode
Transaction 2	: Configure Broadcast
Code	Description
0x2C+ W	I ² C address, write access
0x02	Select READ register
0x002B	Set bit BC for RAM_DATA reading
Transaction 3	: Use RAM ACCESS Command
Code	Description
0x2C+ W	I ² C address, write access
0x00	Select REFERENCE register to access to WFS Register
0x0001	WFS command : RAM ACCESS
0x0463	Set RAM address 0x063 for read access
Transaction 4	: Set the RAM SYNTHESIS WRITE register
Code	Description
0x2C+ R	I ² C address, read access
0x0000	Read 2-byte

Figure 40: RAM ACCESS sequence for RAM read

6.10.2 SEQUENCER

Table 61: SEQUENCER command details

COMM	COMMAND: 0x0002 SEQUENCER														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						COM	/AND [:	15:0] = 0	x0002						
	1	NOT USE	ED: 0x00)				WAVE	ADDRE	SS [9:0) (WAV	/EFORM	1_ID 0)		
	1	NOT USE	ED: 0x00)				WAVE	ADDRE	SS [9:0) (WAV	/EFORM	1_ID 1)		
NOT USED: 0x00 WAVE ADDRESS [9:0] (WAVEFORM_ID 14)															
BITS NAME TYPE DESCRIPTION															
9:0	WAVE	ADDRES	SS	W	A WA\	/E ADDF	RESS is t	he addr	ess of a	WAVE b	lock in t	the RAM	1. The SE	QUENC	ER
					can sto	ore up t	o 15 dif	ferent V	/AVE AD	DRESS i	n WAVI	EFORM_	ID 0 to		
					WAVE	FORM_	ID 14 re	gisters.							
The SE	QUENC	ER is cor	mposed	of 15 re	gisters	number	ed 0x0	to 0xE (\	NAVEFC	RM_ID	0 to WA	AVEFORI	M_ID 14). Each	
WAVE	FORM_I	D conta	ins a W	AVE blo	ck RAM	address	. The SE	QUENC	ER comr	mand is	used to	store W	/AVE blo	ock addr	ess
into each of the 15 WAVEFORM_ID of the SEQUENCER.															
The communication sequence to program the WAVEFORM_IDs into the SEQUENCER includes the following:															
	\A/rita	0,000) to the	DECEDE		ictor to			comm	and					

- Write 0x0002 to the <u>REFERENCE</u> register to use SEQUENCER command.
- Write 15×10-bit words to the <u>REFERENCE</u> register to set the WAVEFORM_ID 0 to WAVEFORM_ID 14 in ascending order to the SEQUENCER. It is not possible to write a single WAVEFORM_ID register. All 15 WAVEFORM_ID must be written. The WAVEFORM_ID registers that are not used may be assigned to any value.

Note that the communication sequence assumes that bits <u>RAM [1:0]</u> are set to 0x3.

6.10.3 RAM SYNTHESIS

Table 62: RAM SYNTHESIS command details

COMM	COMMAND: 0x0012 RAM SYNTHESIS														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	COMMAND [15:0] = 0x0012														
END	END WAVEFORM_ID [3:0] START WAVEFORM_ID [3:0] NOT USED: 0x00														
BITS	S NAME TYPE DESCRIPTION														
15:12	END			W	Set the	e END W	/AVEFO	RM_ID r	number	(numbe	red 0x0	to 0xE,	see <u>SEC</u>	UENCE	<u>२</u>
	WAVE	FORM_	ID		comm	and) po	inting to	the las	t WAVE	block to	o play.				
11:8	START			W	Set the	START	WAVEF	ORM_I) numbe	er (numl	bered 0	0 to 0x	E, see <u>S</u>	EQUENC	ER
WAVEFORM_ID command) pointing to the first WAVE block to play.															
In RAN	1 Synthe	osis (hite	RAM [1.01 set :	$t_0(0x3)$	the SEO	UENCE	R will pla	av all WA	AVE blo	rks start	ing fron	n START		

In RAM Synthesis (bits <u>RAM [1:0]</u> set to 0x3), the SEQUENCER will play all WAVE blocks starting from a WAVEFORM_ID up to END WAVEFORM_ID.

Any write with the RAM SYNTHESIS command indicates that the waveform from START WAVEFORM_ID up to END WAVEFORM_ID is ready to be played. If bit OE is already set to 0x1, the waveform will start to play immediately after the RAM SYNTHESIS command is written. If the bit AUTOP or AUTOR of any sensing channel (registers 0x07, 0x0B, 0x0F and 0x13) is used, the waveform will be automatically played upon a detection event. See section 6.8.2 for more detail. The communication sequence to use the RAM SYNTHESIS command includes the following:

- 1. Write 0x0012 to <u>REFERENCE</u> register to use the RAM SYNTHESIS command.
- 2. Write the following to <u>REFERENCE</u> register:
 - Bits 15:12 with END WAVEFORM_ID number (0x0 to 0xE).
 - Bits 11:8 with START WAVEFORM_ID number (0x0 to 0xE).

Note that the communication sequence assumes that bits <u>RAM [1:0]</u> are set to 0x3.

6.10.4 RAM PLAYBACK

Table 63: RAM PLAYBACK command details

COMN	COMMAND: 0x0013 RAM PLAYBACK													
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													
	COMMAND [15:0] = 0x0013													
	NOT USED: 0x00 START ADDRESS [9:0]													
	NOT USED: 0x00 END ADDRESS [9:0]													
BITS	NAME			TYPE	DESCR	IPTION								
9:0	START	ADDRES	SS	W	Set the	e RAM s	tart ado	dresses f	or fetch	ing RAN	1 Playba	ick samp	oles.	
9:0	9:0 END ADDRESS W Set the RAM end address for fetching RAM Playback samples, which is the last													
	sample read during playback.													
The st	The start and end addresses entered with the RAM PLAYBACK command indicate the location in RAM of the samples to													

The start and end addresses entered with the RAM PLAYBACK command indicate the location in RAM of the samples to be fetched when the RAM Playback is initiated. The 16-bit samples in RAM use the same format as for the direct MODE (see section 6.4) and FIFO mode (see section 6.5) and includes the following:

- Bits [15:12] are the enabled channels.
- Bits [11:0] are the waveform amplitude, as given in by the equation given in Table 18.

The samples in RAM are written using **<u>BURST RAM WRITE</u>** command.

The use of the RAM PLAYBACK command indicates that the waveform is ready to be played. Thus, if <u>OE</u> bit is set 0x1, the waveform will start to play. When using bit AUTOP or AUTOR of any channel (registers 0x07, 0x0B, 0x0F and 0x13), the BOS0614 will automatically start playing upon a detection event. See section 6.8.2 for more detail. The communication sequence to program the START and END ADDRESS using the RAM PLAYBACK command includes the

The communication sequence to program the START and END ADDRESS using the RAM PLAYBACK command includes the following:

- 1. Write waveform data in RAM using <u>BURST RAM WRITE</u> command.
- 2. Write 0x0013 to the <u>REFERENCE</u> register to use the RAM PLAYBACK command.
- 3. Write the START ADDRESS word to the <u>REFERENCE</u> register.
- 4. Write the END ADDRESS word to the <u>REFERENCE</u> register.

Note that the communication sequence assumes that bits <u>RAM [1:0]</u> are set to 0x2.

6.10.5 BURST RAM WRITE

Table 64: BURST RAM WRITE command details

COMN	AND: 0	x0014 B	URST R		TE										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	COMMAND [15:0] = 0x0014														
	1	NOT USE	ED: 0x00)					ST	ART ADI	DRESS [9	9:0]			
	1	NOT USE	ED: 0x00)					C	ΟΑΤΑ CO	UNT [9:	0]			
							DATA	[15:0]							
BITS	NAME			TYPE	DESCR	IPTION									
9:0	START	ADDRE	SS	W	10-bit	address	s from w	here to	start w	riting in	the RAN	ብ with t	he follo	wing	
					constr	aint:									
					0 ≤ STA	ART ADI	DRESS ≤	1023							
9:0	DATA	COUNT		W	The nu	ımber o	f data w	ords to	be writ	ten on t	he RAM	with th	e follow	ing	
					constr	aint:									
					DATA	COUNT	has a m	aximum	n value d	of 1023.					
	DATA COUNT ≤ 1023 – START ADDRESS														
15:0	15:0 DATA W Data to be written in the RAM using the same format as the <u>REFERENCE</u> register.														
The Bl	JRST RA	M WRIT	E comn	nand is u	used to v	write m	ultiple w	ords to	the RA	M when	using t	he RAM	Plavbac	k Mode	(bits

The BURST RAM WRITE command is used to write multiple words to the RAM when using the RAM Playback Mode (bits <u>RAM [1:0]</u> are set to 0x2). The maximum value allowed to be written in RAM is 3593 (0xE09) which correspond to 60 V at output channels.

The communication sequence to write to RAM using the BURST RAM WRITE WFS command includes the following:

- 1. Write 0x0014 to the <u>REFERENCE</u> register to use the BURST RAM WRITE command.
- 2. Write the RAM START ADDRESS word to the <u>REFERENCE</u> register.
- 3. Write the DATA_COUNT word to the <u>REFERENCE</u> register.
- 4. Write the number of DATA [15:0] words equal to DATA COUNT. RAM write address is incremented automatically between words.

Note that the communication sequence assumes that bits <u>RAM [1:0]</u> are set to 0x2.

6.10.6 FULL RAM READ

Table 65: FULL RAM READ command details

COMM	COMMAND: 0x0015 FULL RAM READ														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	COMMAND [15:0] = 0x0015														
In RAN	In RAM Synthesis or RAM Playback mode (bits RAM [1:0] set to 0x2 or 0x3), the FULL RAM READ command is used to														
read th	read the full RAM content on the communication interface. The device will stay in this mode until all the 1024 RAM														
addres	addresses have been read or until the <u>FULL RAM READ BREAK</u> command is used.														
The co	mmuni	cation se	equence	e to use	the FUL	l ram f	EAD co	mmand	include	s the fol	lowing:				
1.	Set b	its <u>BC</u> to	0x2B to	o select	RAM_D	ATA rea	ding.								
2.	2. Write 0x0015 to <u>REFERENCE</u> register to use the FULL RAM READ command.														
3.	3. Write 0x0000 (or any value except 0xFF15) to <u>REFERENCE</u> register.														
4.	4. Read 2 bytes														
5.	5. Repeat step 3) and 4) until the last RAM address or until using the FULL RAM READ BREAK command. The RAM														

address is automatically incremented.

Note that the communication sequence assumes that bits <u>RAM [1:0]</u> are set to 0x2 or 0x3.

6.10.7 FULL RAM READ BREAK

Table 66: FULL RAM READ BREAK command

COMM	COMMAND: 0xFF15 FULL RAM READ BREAK														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	COMMAND [15:0] = 0xFF15														
The Fl	The FULL RAM READ BREAK command 0xFF15 is used to stop the RAM content reading loop started with the														
FULL F	FULL RAM READ command.														

7 Implementation

7.1 Typical Schematics

The Figure 41 and Figure 42 presents the typical schematics for non-UPI and UPI configuration.

Figure 41: Typical schematic (non-UPI configuration)

Figure 42: Typical schematic with UPI configuration.

7.2 External Components

The Table 67 lists the recommended components required for a typical application with UPI configuration and a Li-ion battery (3.3 to 4.2 V) connected to V_{BUS} used to drive a single 400 nF load at 60 V.

A Bill of Material (BoM) Calculator, available at <u>www.boreas.ca</u>, can also be used to determine the components for a specific application.

COMPONENT	DESCRIPTION	TYPICAL VALUE
C _{VBUS}	Input capacitor	100nF
C _{VDD}	Supply decoupling capacitor	100 μF
C _{VDDIO}	VDDIO decoupling capacitor	100 nF
C _{REG}	Regulator capacitor	100 nF
Сримр	Voltage pump capacitor	100 nF
Сни	Output capacitor to VDD	20 nF ⁽¹⁾
C _{HV2} ⁽²⁾	Output capacitor to PGND	1.5 nF
R _{sense}	Current sense resistor	130 mΩ, 500 mW
L ₁	Inductor	10 μΗ

Table 67: Recommended external components for an output voltage of 60 V and 400 nF load (one channel) with Li-ion battery

(1) C_{HV} is 5% of the maximum load, which is the maximum load capacitance driven at the same time. If four identical actuators are connected to the four channels, but no more than two actuators are driven at the same time, the maximum load is the addition of the capacitance of two actuators.

(2) The recommended CHV2 type is X7R / 100 V in a 0603 package.

7.3 Initialization

7.3.1 Power-Up Sequence with an Active Host MCU

With a powered-up and active MCU connected to its digital interface, the BOS0614 can be powered-up with the following sequence:

- 1. Apply power to the BOS0614 device.
- 2. Wait 10 ms for the BOS0614 to perform its initialisation sequence and enter SLEEP mode.
- 3. Wake-up from SLEEP by writing on the $I^2C/I3C$ bus.
- 4. Wait 50 μ s for the BOS0614 to reach IDLE mode.
- 5. Program the main registers to the appropriate values according to your application.
- 6. If required, write data in RAM.
- 7. BOS0614 is ready for waveform playback.

7.3.2 Power-Up Sequence with the Piezo Actuator Sensing

The default parameters of the BOS0614 allow the device to power-up using a piezo actuator sensed signal, without the need of any active MCU connected to its digital interface. This feature is useful when

the BOS0614 is used to replace power buttons. In this case, the BOS0614 can be powered-up with the following sequence:

- 1. Apply power to the BOS0614 device.
- 2. Wait 10 ms for the BOS0614 to performs its initialisation sequence and enter SLEEP mode.
- 3. Wake-up from SLEEP by pressing on one connected piezo actuator with enough force to trigger a press event (see the main register map in section 6.9 for default values). The corresponding GPIO will be pulled down and no haptic feedback will be triggered.
- 4. Hold the button for as long as needed to power-up your system.
- 5. Program the main registers to the appropriate values according to your application.
- 6. If required, write data in RAM.
- 7. BOS0614 is ready for waveform playback.

7.3.3 Start-Up Sequence

Once the BOS0614 is powered up, it can wake-up from SLEEP mode with either a MCU communication or a Zero Power Sensing (configuration is detailed in section 6.2.9).

The following start-up sequence applies when waking-up with a MCU communication:

- 1. Wake-up from SLEEP by writing on the I²C/I3C bus. The data will wake-up the IC but will not have any effect on the configuration of the registers.
- 2. Wait 50 μs for the BOS0614 to reach IDLE mode.
- 3. Do the two following consecutive writes:
 - Set bit <u>OE</u> to 0x1
 - Set bit <u>OE</u> to 0x0
- 4. Program the main registers to the appropriate values according to your application (optional).
- 5. Write data in RAM (optional).
- 6. BOS0614 is ready for waveform playback.

The following start-up sequence applies when waking-up with Zero Power Sensing:

- 1. Write a valid data to the IC within 100 ms of the actuator release, or the BOS0614 will return to SLEEP mode.
- 2. Program the main registers to the appropriate values according to your application (optional).
- 3. Write data in RAM (optional).
- 4. BOS0614 is ready for waveform playback.

7.4 Design Methodology: Selection of Component

This section details the methodology to properly select the circuit components.

Piezoelectric actuators are subject to capacitance increase as a function of the voltage applied on it. If this capacitance increase is not specified in the actuator datasheet, assume a 50% over the voltage range and use this increased capacitance value in all calculations in this section.

Note that the calculations presented in this section provide approximate values of parameters and the values measured in practice could be different.

7.4.1 Load Selection

The BOS0614 is designed to drive simultaneously on all its channels a total effective load (Z_{L-TOT}) of up to 468 Ω at 60 V with a 3 V supply voltage (V_{DD}). Each channel has been optimized to drive a maximum effective load of 935 Ω with same conditions. Larger load can be driven if the waveform amplitude is

reduced or the supply voltage increased (V_{DD}), as shown in Figure 13. The conditions must be selected so as not to exceed the maximum peak transient current per channel (I_{pk-OUT}) of 1 A, and the maximum current in L_1 (I_{pk}) of 2 A which is equivalent to the sum of the peak transient current (I_{pk-OUT}) of all channels that is limited by R_{sense} (see section 7.4.4 for R_{sense} selection).

You can use the following procedure to estimate the maximum peak current on a channel using the desired conditions (the peak current could be higher in practice):

- 1. Determine the output signal maximum frequency (f_{OUT}), e.g., 300 Hz
- 2. Determine the maximum amplitude of the waveform (V_{pk}) , e.g., 60 V
- 3. Determine the minimum supply voltage (V_{DD}) value during operation (consider the voltage drop on V_{DD} line), e.g., 3 V
- 4. Determine the maximum load to drive on the channel (CL), e.g., 800 nF
- 5. Calculate the maximum power transfer point:

$$V_{out}(V) = \frac{V_{pk}}{2}(1 + \sin(30)) + V_{DD}$$
(1)

$$\overline{I_{out}}(A) = \pi f_{OUT} C_L V_{pk} \cos(30)$$
⁽²⁾

6. Calculate the average input current using:

$$\overline{I_{\text{in}}}(A) = 1.5 \times \frac{V_{\text{out}}\overline{I_{\text{out}}}}{V_{\text{DD}}}$$
(3)

7. Calculate the inductor peak current:

$$I_{pk-OUT}(A) = 1.5 \times \overline{I_{IN}}$$
(4)

7.4.2 C_{HV} Selection

Regardless of the type of waveform played, the required C_{HV} capacitance is determined by the total load capacitance of all output channels (C_{L-TOT}) using the following:

$$C_{\rm HV} = 5\% C_{\rm L-TOT}$$
(5)

The C_{HV} capacitor should have a voltage rating at least equivalent to the maximum amplitude of the waveform (e.g., a C_{HV} capacitor with a minimum voltage rating of 60 V is required to play a 60 V waveform).

7.4.3 L₁ Selection

A 10 μ H inductor (L₁) is recommended, but the BOS0614 can use several inductor types. The minimum saturation current of the inductor must be greater than the peak current at SW pin (I_{pk}) which is equivalent to the sum of the peak transient current (I_{pk-OUT}) of all channels, as calculated in section 7.4.1. Select the inductor with the smallest DCR value possible.

7.4.4 Rsense Selection

 R_{sense} component limits the current injected to the BOS0614 power converter. The R_{sense} value must be selected to enable a current range appropriate for the peak current at SW pin (I_{pk}) determined in section 7.4.1. R_{sense} is determined by:

$$R_{\text{sense}} = \frac{0.256 \text{ (V)}}{I_{\text{pk}}} \tag{6}$$

The power rating of R_{sense} must be chosen according to your application requirements. The RMS current in the resistor will be much lower than the current limit set. Table 68 shows an example of conservative power ratings for different I_{pk} current.

Table 68: Inductor peak current limit, min/max values

R _{sense} (mΩ)	I _{PK} (A)	POWER RATING (W)	COMMENT
130	2	0.5	Minimum allowed value
250	1	0.25	
500	0.5	0.125	

7.4.5 Input Capacitor (C_{VDD})

An input capacitor (C_{VDD}) must be placed next to the inductor because of the power converter current requirement. A low-ESR capacitor C_{VDD} of at least 10 μ F is recommended.

If the Unidirectional Power Input (UPI) mode is enabled (<u>UPI</u> bit set to 0x1), the energy recovered from the load in reverse mode accumulates on C_{VDD} . Energy accumulation on C_{VDD} causes the input voltage to increase. This voltage increase must not cause the total C_{VDD} voltage to exceed the maximum recommended V_{DD} of 5.5 V. The minimum C_{VDD} capacitance value can be determined by:

$$C_{\rm VDD} = \frac{C_{\rm load} V_{\rm pk}^2}{V_{\rm DD\ max}^2 - V_{\rm BUS\ max}^2} \tag{7}$$

Select a capacitor with an effective capacitance close to the calculated C_{VDD} value. Note that tantalum capacitors are preferred over ceramic capacitors which generally have a high DC bias characteristic that significantly reduces the effective capacitance. Note that if the calculated C_{VDD} capacitance is too large, which would require large capacitor footprint, it could be replaced by a 10 μ F C_{VDD} in parallel with a Zener diode that would drain the excess charges.

7.4.6 Validating Components Choice

The <u>MAX POWER</u> bit can be monitored to validate if the components choice allows a peak current I_{pk} high enough. If <u>MAX POWER</u> bit is 0x1, it means the peak current calculated is too low and the selected components might need to be changed. It is important to note that a higher inductor DCR will decrease the BOS0614 efficiency and lead to a higher effective I_{pk} requirement.

Sizing the system to operate over a wide range of conditions requires bigger passive components ($C_{VDD,}$ L_1 and R_{sense}) to accommodate higher peak current. Thus, defining the operating conditions is important

in applications where space and cost are critical. For example, to reduce the BOM, one could do the following:

- Limit the haptic amplitude when using a lower V_{DD} supply voltage.
- Limit the number of channels playing haptic at the same time.
- Decrease the output signal frequency.

7.5 Design Methodology: Programming

Many operational settings are adjustable through the digital front end. This section presents the typical parameters that can be adjusted to adapt the BOS0614 to a specific design.

7.5.1 Loop Controller

The BOS0614 implements a proportional-integral (PI) control loop feedback that can be optimized if required with the following parameters:

- Set proportional gain: <u>KP [10:0]</u>
- Set proportional gain term related to waveform amplitude: <u>KPA [7:0]</u>
- Set integral term: <u>KIBASE [3:0]</u>

Table 69 shows the recommended loop controller parameters for a 1.6 μ F load operating at up to 60 V and 300 Hz with L₁=10 μ H inductor and R_{SENSE}= 130 m Ω . While it is possible to work with the same set of parameters for 1 to 4 active channels, performance can be optimized by adjusting the loop controller parameters to the number of simultaneous active channels.

PARAMETER	RECOMMENDED VALUE	COMMENT
<u>KP [10:0]</u>	128 (0x80), default	KP [10:0] could be reduced when using small load.
<u>KPA [7:0]</u>	16 (0x10), default	KPA [7:0] could be reduced when using small load.
KIBASE [3:0]	3 (0x3), default	KIBASE [3:0] could be increased to 3 or 4 when using a
		larger inductor.

Table 69: Loop controller parameters

7.5.2 Power Efficiency

The power efficiency of the BOS0614 and haptic waveform integrity can be optimized by configuring the internal controller and the switching timing of the internal power MOSFETs (Low-Side and High-Side switch). This can be done by modifying the following registers based on selected inductor value (L_1) and current sense limit (R_{sense}):

- Set proportional gain: <u>KP [10:0]</u>
- Set the nominal supply voltage (V_{BUS}) of the design with <u>VBUS [4:0]</u>
- Adjust power switch deadtime with bits <u>DHS [6:0]</u> and <u>DLS [4:0]</u>
- Adjust minimum current required to turn-on HS with bits <u>I ON SCALE [7:0]</u>
- Adjust typical capacitance value on pin SW with bits <u>PARCAP [7:0]</u>
- Adjust proportional gain for the offset with <u>TI_RISE [5:0]</u>

8 PCB Layout Example

Figure 43 presents a 4-layer PCB layout example based on the following considerations:

- Recommended layers are: Top, GND plane, Power plane (split with VDD and VBUS), Bottom
- Close placement of components L_1 , R_{sense} and C_{VDD} to minimize the area of the high current loop formed by these components
- L₁ is a TDK Corporation VLS4012HBX series inductor with 4×4 mm package
- C_{VDD} capacitor is a 1206 (3216 metric) package, adequate for UPI configuration
- Components C_{HV} and C_{HV2} are respectively in 0805 (2012 metric) and 0603 (1608 metric) packages
- Components C_{PUMP}, C_{REG}, C_{VDDIO} and C_{VBUS} are in 0402 (1005 metric) package
- Component R_{SENSE} is in 0805 (2012 metric) package
- Traces connecting L₁, R_{SENSE} and C_{VDD} are as wide as possible to minimize resistance, and multiple vias are used, when possible, to reduce both via resistance and inductance
- All signal lines are 6 mils (0.152 mm) wide, minimum spacing of 6 mils
- All other lines are 8 mils (0.203 mm) wide, minimum spacing of 6 mils
- Requires 0.15 mm vias and Via-in-Pad technology for vias inside U1

Figure 43: Typical configuration PCB layout example

9 Mechanical Information

9.1 WLCSP Package Description

Figure 44: WLCSP 30B 2.1mm × 2.5mm package outline drawing with top, side and bottom view

SYMBOL		MILLIMETER	S		MILS	
	MIN	NOM	MAX	MIN	NOM	MAX
А	0.585	0.625	0.665	23.0	24.6	26.2
A1	0.180	0.200	0.220	7.1	7.9	8.7
A2	0.380	0.400	0.420	15.0	15.7	16.5
A3	0.022	0.025	0.028	0.9	1.0	1.1
E	2.055	2.075	2.095	80.9	81.7	82.5
D	2.505	2.525	2.545	98.6	99.4	100.2
E1		1.60 BSC			63.0 BSC	
D1		2.00 BSC		78.7 BSC		
е		0.40 BSC			15.7 BSC	
b	0.245	0.265	0.285	9.6	10.4	11.2

Table 70: WLCSP 30B 2.1mm × 2.5mm package dimensions

BSC: Basic Spacing between Center.

Four lines are branded on the package:

- (1) Company Name: BOREAS
- (2) Device Marking / Product Name: 0614
- (3) Wafer Batch Number (XXXXXX)
- (4) Assembly Date (YYWW, year and week) with Assembly House Code (ZZ)

9.2 WLCSP Package Soldering Footprint

The use of non-solder mask defined (NSMD) pads is recommended, with 0.05 mm solder mask expansion as shown in Figure 45.

Figure 45: WLCSP 30B 2.1mm × 2.5mm soldering footprint (NOT TO SCALE)

BOS0614 Product Datasheet

9.3 WLCSP Reflow

BOS0614 supports JEDEC J-STD-020D.1 reflow profile using SAC405 bumps. The profile must be optimized for specific PCB assembly conditions.

Figure 46: WLCSP reflow profile

Table	71:	Reflow	profile	parameters
10010	, . .	11011	projiic	parameters

PARAMETER	DESCRIPTION	VALUE
T _{Smin}	Preheat minimum temperature	150°C
T _{Smax}	Preheat maximum temperature	200°C
ts	Time from T _{Smin} to T _{Smax}	60-120 s
	Ramp-up rate from T_L to T_P	3°C/s max
TL	Liquidus temperature	217°C
T _P	Peak package temperature	260°C
tL	Time above T∟	60-150 s
	Ramp-down rate from T_P to T_L	6°C/s max
	Time 25 °C to peak temperature	8 min max

9.4 Tape and Reel Specifications

9.4.1 BOS0614 12 mm Tape Specification

Figure 47: 12 mm embossed carrier tape dimensions (NOT TO SCALE)

Table 72: Constant dimensions for embossed 12 mm car	ier tape – Reference ANSI/EIA-481 (all dimensions in mm)
--	--

TAPE SIZE	W	$\oint D_0$	D ₁ MIN.	E1	Po	P ₂	Т
12 mm	12.00 ± 0.30	1.5 + 0.1	1.50	1.75 ± 0.10	4.00 ± 0.10	2.00 ± 0.10	0.30 ± 0.05
		- 0.0					

Table 73: Variable dimensions for embossed 12 mm carrier tape – Reference ANSI/EIA-481 (all dimensions in mm)

TAPE SIZE	W	F	P ₁	A ₀	B ₀	K ₁
12 mm	12.00 ± 0.30	5.50 ± 0.10	8.00 ± 0.10	2.375 ± 0.10	2.825 ± 0.10	0.925 ± 0.10

Figure 48: BOS0614 product orientation on 12 mm embossed carrier tape (NOT TO SCALE)

9.4.2 BOS0614CW 330 mm (13") Reel Specifications (7" Hub)

Figure 49: Reel outline drawing (NOT TO SCALE)

Table 74: Constant 330 mm (13") reel almensions – Reference ANSI/EIA-481 (all almensions in mm	Table	74: Constant	330 mm (13")	reel dimensions	- Reference A	ANSI/EIA-481	(all dimensions	in mm)
--	-------	--------------	--------------	-----------------	---------------	--------------	-----------------	--------

TAPE SIZE W	REEL SIZE Ø A	B MIN.	ØC	Ø D MIN.
12.00 ± 0.30	330.0 ± 2.0 (13")	1.5	13.0 + 0.5 - 0.2	20.2

Table 75: Variable 330 mm (13") Reel dimensions – Reference ANSI/EIA-481 (all dimensions in mm)

TAPE SIZE W	REEL SIZE Ø A	ØN	W1	W ₂ MAX.	W ₃
12.00 ± 0.30	330.0 ± 2.0 (13")	178 ± 2.0 (7")	12.4 + 2.0 - 0.0	18.4	13.9

Figure 50: BOS0614 Leader/trailer and orientation on 12 mm tape.

10 Known issues

10.1 Wake-Up from SLEEP Mode

Problem Description

Once the device wakes-up from SLEEP mode by a communication on I²C/I3C bus while sensing is enabled on at least one channel (see section 6.8), it may return to SLEEP mode unexpectedly.

This issue occurs because a false ZPS event could be detected when the device wakes up from SLEEP by a communication on I²C/I3C bus, which could make the device returning into SLEEP unexpectedly.

Workaround

After waking the IC using a communication on I²C/I3C bus, the following commands should be done:

- 1. Wait 50 μ s for the BOS0614 to reach IDLE mode.
- 2. Set bit OE to 0x1
- 3. Set bit OE to 0x0

Status

This issue applies to all devices.

10.2 Device Reset

Problem Description

After a Device Reset (bit <u>RST</u> set to 0x1), the device may unintentionally go back into SLEEP.

This issue occurs because a false ZPS event could be detected even though the device is not in SLEEP mode, which could make the device go into SLEEP mode.

Workaround

The Device Reset procedure should be as follow:

- 1. Set bit <u>RST</u> to 0x1 to start the software reset.
- 2. Wait 50 μs for the BOS0614 to reach IDLE mode
- 3. Set bit OE to 0x1
- 4. Set bit <u>OE</u> to 0x0

Status

This issue applies to all devices.

10.3 Calibration

Problem Description

When a sense calibration request is made (by setting <u>SENSECONFIG.CAL</u> to 0x1) without sensing enabled on any channel (<u>SENSECONFIG [3:0]</u> bits set to 0x0), the calibration can lead to incorrect results. In this situation, if a second calibration request is made, it may get stuck and the device become unusable. The calibration may be unstuck with the following sequence:

- 1. Set <u>SENSECONFIG.CAL</u> bit to 0x0.
- 2. Set <u>SENSECONFIG.CH0</u> bit to 0x1 (or any other channel).

Workaround

To avoid the calibration issue, the sensing configuration sequence must be done as follow:

- 1. Set <u>SENSECONFIG [3:0]</u> bits to 0x1 for calibration purpose.
- 2. Run sensing calibration by setting bit <u>SENSECONFIG.CAL</u> to 0x1.
- 3. Wait the calibration to finish by polling <u>SENSECONFIG.CAL</u>. The calibration duration is approximately set by bits <u>CONFIG.SHORT [1:0]</u>.
- 4. Configure the sensing conditions using registers 0x06 to 0x16.
- 5. Enable sensing on the desired channel using <u>SENSECONFIG [3:0]</u> bits.

Status

This issue applies to all devices.

11 Ordering Information

Table 76: Ordering information

	ORDERING PART	PACKAGE (2)	PACKING	STANDARD	MSL	DEVICE
	NUMBER (1)		FORMAT	QUANTITY (3)	PEAK TEMP. (4)	MARKING
1	BOS0614CWT	WLCSP 30B 2.1mm × 2.5mm	Cut Tape (T)	Min: 20 Max: 4000	Level 1 260 °C Unlimited	0614
2	BOS0614CWR	WLCSP 30B 2.1mm × 2.5mm	Tape & Reel (R)	5000 / Reel	Level 1 260 °C Unlimited	0614

NOTE

- (1) Ordering Part Number where last letter indicates packing format.
- (2) All parts are RoHS compliant.
- (3) Contact sales@boreas.ca to order.
- (4) MSL: Moisture Sensitivity Levels, IPC/JEDEC J-STD-020.

12 Document History

Table 77: Document Changes

ISSUE	DATE	DOCUMENT NUMBER	CHANGES
4	April	BT005EDS01.01	Product Datasheet
	2022		Added Typical Performance Characteristics (section 5.5)
			Clarified the WFS Command Interpreter description (section 6.10)
			WFS Command names changed (section 6.10)
			Device package branding changed (section 9.1)
3	January	BT005DDS01.01	Preliminary Datasheet
	2022		Changed C _{HV2} from optional to recommended (section 7.2)
			Added details to SLEEP mode (section 6.2.5)
			Added details to Device Reset procedure (section 6.2.6)
			Added details to Input Trigger section (section 6.2.10)
			Added typical sensing configuration (section 6.8.1)
			Register SENSERAWx removed (section 6.9)
			Device package branding (section 9.1)
			Added Known Issues section (section 10)

Confidential

13 Notice and Warning

Warning High Voltage

For safety, this integrated circuit must be used by qualified and skilled personnel familiar with all applicable safety standards.

ESD Caution

This integrated circuit is ESD (Electrostatic Discharge) sensitive. Therefore, proper ESD precautions and procedures are recommended for handling and installation to avoid damage.

Information relating to products and circuits furnished herein by Boréas Technologies Inc. is believed to be reliable. However, Boréas Technologies assumes no liability for errors that may appear in this document, or for liability otherwise arising from the application or use of any such information which may result from such application or use. The products, their specifications and the information appearing in the document are subject to change by Boréas Technologies without notice. Trademarks and registered trademarks are the property of their respective owners.

Boréas's products are provided subject to the Boréas's Terms & Conditions available at:

https://www.boreas.ca/pages/general-terms-and-conditions

Boréas Technologies Datasheet Status:

Advance Information Datasheet:	Design Data
Preliminary Information Datasheet:	Prototype information
Final Datasheet:	Production information